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Abstract: Microgrids are increasingly being utilized to improve the resilience and operational
flexibility of power grids, and act as a backup power source during grid outages. However,
it necessitates that the microgrid itself could provide power to the critical loads. This paper
presents an algorithm named alternating optimization based sequential boolean quadratic
programming tailored for solving optimal demand shut-offs problems arising in microgrids.
Moreover, we establish local superlinear convergence of the proposed approximate Boolean
quadratic programming method over nonconvex problems. In the end, the performance of the
proposed method is illustrated on the modified IEEE 30-bus case study.
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1. INTRODUCTION

Microgrids are small-scale power grids that can operate
autonomously or in collaboration with other small power
grids, which are increasingly being utilized to increase
the resilience and operational flexibility of power grids.
They act as a backup power supply in the case of grid
outages caused by devastating disasters. Abbey et al.
(2014) summarized the measures taken by Sendai region
in Japan to cope with the shortage of circuit supply caused
by the nuclear power accident after the 2011 East Japan
Earthquake. Similarly, Panora et al. (2014) describes a
successful case of rapid restoration of local microgrid inte-
grated energy systems after infrastructure damage caused
by Superstorm Sandy in Manhattan Island, 2012. How-
ever, this necessitates that each isolated microgrid itself
be resistant and formulate its own optimal power supply
strategy with the shortage of energy supply, which is still
a challenging problem. Basically, a potential solution is to
abstract the above power grid optimization problem in a
mixed Boolean nonlinear programming fashion (MBNLP).

To the best of our knowledge, classical optimization in
power grid consists optimal power flow (OPF, Frank et al.
(2012)), optimal reactive power dispatch (Zhu (2015)),
power system state and parameter estimation (Monti-
celli (1999); Du et al. (2019)). Recently, Du et al. (2020,
2022) proposes the method of optimal experimental design
(OED) in order to extract more relative information for
assisting the admittance estimation process. Moreover,

⋆ All five authors contribute equally.

Du et al. (2021) offers an adaptive method for balancing
OED and the OPF cost. These mentioned power grid op-
timization problems are smooth and can be solved directly
with interior point method, while notable recent researches
optimize the discrete decision variables at the same time.
Rhodes et al. (2020) and Kody et al. (2022) modeled the
direct current (DC) optimal power shut-in problems in
a mixed integer linear program (MILP) framework and
solved them with Gurobi. However, only few literature can
be found for nonconvex MBNLP in the area of alternating
current (AC) power systems. On the other hand, from
the algorithmic level, the solver is based on branch and
bound (B&B) method (Morrison et al. (2016)), which
needs to establish a tree storage structure to explore each
integer variable with low efficiency. Luo et al. (2010) solves
Boolean optimization in a semi-definite relaxation (SDR)
fashion, however, with matrix variables. Solving noncon-
vex MBNLP accurately and efficiently remains an open
problem in our view.

Recently, a quadratic programming with linear comple-
mentary constraint (LCQP) problem is well studied by
a series of literatures (Hall et al. (2021, 2022)). By se-
quentially solving the QP problem with the correspond-
ing linearlized penalty term, the complementary con-
straint can be reached with finite steps. Inspired by the
above literatures, alternating optimization based sequen-
tial boolean quadratic programming (AO-SBQP) (Zhu
and Du (2022)) is proposed to set up a bridge between
LCQP and MBNLP, leading the solution of optimization
problems with Boolean variables no longer rely on B&B
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method with tree structure searching or SDR with matrix
variables.

In this paper, the idea of AO-SBQP method is inherited,
and the algorithm is modified in the specific optimal
distribution of limited supply scenario in microgrid. Unlike
Zhu and Du (2022), our considered model is still a non-
convex problem except the Boolean variable constraints.
Moreover, a local convergence analysis for the approximate
BQP with constraints is introduced.

The rest of this paper is organized as follows: Section
2 reviews the basics concepts of power grid. Sections 3
proposes the optimal distribution of limited supply model.
Section 4 describes the AO-SBQP algorithm in detail. And
the numerical result is shown in Section 5.

Notation: For a ∈ Rn and C ⊆ {1, ..., n}, [ai]i∈C ∈ R|C|

collects all components of a whose index i is in C. Similarly,
for A ∈ Rn×l and S ⊆ {1, . . . , n}×{1, . . . , l}, [Ai,j ](i,j)∈S ∈
R|S| denotes the concatenation of Ai,j for all (i, j) ∈ S.
i =
√
−1 denotes the imaginary unit, such that Re(z) + i ·

Im(z) = z ∈ C, and â denotes the estimated value of a.
Moreover, 1 represents a vector with all entries being one.

2. AC POWER GRID MODEL

Consider a power grid defined by the triple (N ,L, (G +
iB)), where N = {1, 2, . . . N} represents the set of buses,
L ⊆ N × N denotes transmission lines and (G + iB) ∈
CN×N is the complex and potentially sparse Laplacian
admittance matrix

(Gk,l + iBk,l)
.
=

{ ∑
i̸=k

(gk,i + i bk,i) if k = l,

− (gk,l + i bk,l) if k ̸= l.

Here, gk,l and bk,l are the conductances and susceptances
of the transmission line (k, l) ∈ L, which aims to connect
the buses. Note that (Gk,l + iBk,l) = 0 if (k, l) /∈ L. The
set G ⊆ N collects all nodes equipped with generators and
D ⊆ N collects all nodes with power demands. Figure 1
shows a 5-bus system withN = {1, . . . , 5}, G = {1, 3, 4, 5},
D = {2, 3, 4}.

1 2 3

45

generator
consumer

5.2 p.u.

6 p.u.

1.7 p.u. 3 p.u.

2 p.u.

3 p.u.

4 p.u.

Fig. 1. Modified IEEE 5-bus system from Li and Bo (2010)
with 4 generators and 3 consumers.

Let vk denote the voltage amplitude at the k-th node
and θk the corresponding voltage angle, θk,l denotes the
angle difference between node k and l. Throughout this
paper, we assume that the voltage magnitude and the
voltage angle at the first node (the slack node) are fixed,
θ1 = 0 and v1 = const . We refer to Du et al. (2021) and

Du et al. (2022) for further discussion. The state variables
of the system is defined as

x
.
= [vk, θk]

⊤
k∈N ∈ R2|N |.

Moreover, we have active and reactive power generation of
generators pgk and qgk for all k ∈ G, and dk = (pdk, q

d
k)

⊤

denote the active and reactive power demand at demand
nodes k ∈ D. We consider active and reactive power supply
of all generators

u
.
=
[
pgk, q

g
k

]⊤
k∈G ∈ R2|G|

as the system input variables.

The active and reactive power flow over the transmission
line (k, l) ∈ L is given by

Πk,l(x)
.
=v2k

[
gk,l

−bk,l

]
− vkvl

[
gk,l, bk,l

−bk,l, gk,l

][
cos(θk,l)

sin(θk,l)

]
.

The total power outflow from node k ∈ N is given by

Pk(x)
.
=v2k

∑
l∈Nk

[
gk,l

−bk,l

]

− vk
∑
l∈Nk

vl

[
gk,l, bk,l

−bk,l, gk,l

] [
cos(θk,l)

sin(θk,l)

]
.
=
∑
l∈Nk

Πk,l(x),

where
Nk

.
= {l ∈ N | (k, l) ∈ L}

denotes the set of neighbors of node k ∈ N .

3. OPTIMAL DISTRIBUTION OF LIMITED SUPPLY
POWER NETWORK

In the limited power supply scenario, potentially,∑
k∈G

pgk <
∑
k∈D

pdk,

here, pgk denotes the upper bound of active generator power
input of bus k. This leads to a fact that not all the power
demand will enjoy stable energy supply. Thus we introduce
y ∈ R|D| with yk ∈ {0, 1} as an auxiliary switch variable.
Then the power supply at a given bus can be expressed as

Sk(u, y)
.
=


[
pgk, q

g
k

]⊤ − y2k [pdk, qdk]⊤ , k ∈ D,G[
pgk, q

g
k

]⊤
, k /∈ D, k ∈ G

− y2k
[
pdk, q

d
k

]⊤
, k ∈ D, k /∈ G.

Thus, the power flow equations can be written in the form

P (x) = S(u, y) , (1)

where

P (x)
.
=
[
P1(x)

⊤, . . . , PN (x)⊤
]⊤
,

S(u, y)
.
=
[
S1(u, y)

⊤, . . . , SN (u, y)⊤
]⊤
.

Notice that dim(P ) = dim(x) = 2|N | .
Optimal power demand shut-offs (weighted maximum load
delivery, Rhodes et al. (2020)) can be formulated in the
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following way for a given positive rank rk ∈ R+ of each
power demand.

max
x,u,y

f(x, u, y) =
∑
k∈D

ykrkp
d
k (2a)

s.t. P (x)− S(u, y) = 0 (2b)

x ≤ x ≤ x (2c)

u ≤ u ≤ u (2d)

yk ∈ {0, 1}. (2e)

Here we are trying to provide stable power supply for the
most important consumers with limited resource. Unlike
other classical optimization problems over power grid (Zhu
(2015), Frank et al. (2012)), the Boolean variable y leads
Equation (2) into a non-smooth non-convex MBNLP form.
This leads it difficult for the mainstream algorithms such
as interior point method to be applied directly. However,
it can be reformulate as a mathematical programs with
complementarity constraints problem(MPCC) (Hall et al.
(2021), Hall (2021)).

We reformulate Problem (2) in the following form:

max
x,u,y

E(x, u, y) (3a)

s.t. C(x, u, y) ≤ 0 (3b)

0 ≤ yk ⊥ (1− yk) ≥ 0, (3c)

with

E(x, u, y)
.
=
∑
k∈D

ykrkp
g
k−(

ykrkvk
∑
l∈N

vl(Gk,l cos(θk,l)+Bk,l sin(θk,l))

)
,

C(x, u, y)
.
=


P (x)− S(u, y)
S(u, y)− P (x)

x− x
x− x
u− u
u− u

 (4)

and

0 ≤ yk ⊥ (1− yk) ≥ 0⇔


0 ≤ yk
0 ≤ 1− yk
0 = yk · (1− yk).

(5a)

(5b)

(5c)

Note that the problem is based on AC static model at
a specific time point without dynamic. The renewables
and storage for microgrid is considered as the part of
power supply in the model so considering these modules
separately is not essential. Apart from the MPCC con-
straints, Problem (3) is still a nonlinear programming
(NLP) problem which is relatively not easy to handle.
In the next section, we will introduce a new method
called Alternating Optimization Based Sequential Boolean
Quadratic Programming Method (AO-SBQP) (Zhu and Du
(2022)) that can deal with it.

4. ALTERNATING OPTIMIZATION BASED
SEQUENTIAL BOOLEAN QUADRATIC

PROGRAMMING

This section reviews the basic AO-SBQP structure (Zhu
and Du (2022)) which solves Problem (3) in a sequential
way by optimizing the continuous and Boolean variables
into different steps.

4.1 Approximation of BQP

The Lagrangian function of Equation (3) (Bertsekas
(1997)) without (5) is

L0(x, u, y, λ0)
.
= E(x, u, y)− λ⊤0 C(x, u, y).

According to the standard penalty reformulation,

ϕ(y)
.
= y⊤(1− y)

is considered as the bi-linear complementarity penalty
function relates to Equation (5c). A second-order Taylor
expansion of L0(y, λ0) (Hall et al. (2021)) on penalty with
respect to y is

υ(y)
.
=

1

2
y⊤Qy + (g − ρ∇ϕ(ỹ))⊤y. (6)

Here 0 ≻ Q
.
= ∇2

yL0(x̃, ũ, ỹ, λ̃0) ∈ R|D|×|D|, g =

∇yE(x̃, ũ, ỹ) ∈ R|D|, ρ > 0, and (x̃, ũ, ỹ, λ̃) represents the
value of (x, u, y, λ) from the last NLP iteration.

For each iteration, the following simplified QP (7) needs
to be solved, here

max
y

υ(y − ỹ) (7a)

s.t. b+A · (y − ỹ) ≥ 0 |λ (7b)

y ≥ 0 |µ (7c)

1− y ≥ 0 |γ (7d)

with A = ∇yC(x̃, ũ, ỹ) ∈ R(8|N |+4|G|)×|D|, b = C(x̃, ũ, ỹ) ∈
R(8|N |+4|G|). As discussed in Ralph* and Wright (2004),
penalty parameter ρ can be modulated to meet the com-
plementartiy satisfaction.

4.2 Local Convergence Analysis for Approximate BQP

In this subsection, we will show a convergence analysis of
the simplified QP (7). For representational convenience,
we introduce ∆y = y − ỹ as the primal step.

The merit function

ψ(y)
.
=

1

2
y⊤Qy + g⊤y − ρϕ(y) (8)

represents the outer loop objective function. It pointed out
that merit function ψ(y) at yk iteration is non-increasing
towards Equation (7) for the local convexity of υ(y) (Hall
et al., 2021, Section III) and the property

∇ψ(yk)⊤∆y = ∇υ(yk)⊤∆y.
However no convergence rate is discussed.

To ensure any local solution is a regular stationary point
of Equation (7), two assumptions are introduced below.

Assumption 1. Linear Independence Constraint Qualifica-
tion Condition (LICQ)
The matrix A has full row rank in the optimal value of
y∗ thus the gradients of active inequality and equality
constraints are linearly independent. We refer to (Hall,
2021, Chapter 2) for further discussion.

Assumption 2. Second Order Sufficient Condition (SOSC)
We assume the Hessian matrix Q is negative semi-definite
in a local neighborhood of y∗. This statement is well-known
in Newton-type algorithms. Suppose Q is not negative
semi-definite in the current iteration, then set Q← Q−ρI
(Bliek1ú et al. (2014)).
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Theorem 1. Let Assumption 1 and 2 of Equation (7) be
applicable, then the iteration of BQP can converge to
the local saddle point ϕ(y∗) with super-linear convergence
rate by using suitable line search step size α and penalty
parameter ρ.

Proof. The Lagrangian function of Problem (7) shows as

L(y, λ, µ, γ) .=1

2
∆y⊤Q∆y + (g − ρ∇ϕ(ỹ))⊤∆y

+ λ⊤(b+A∆y) + µ⊤y + γ⊤(1− y).
(9)

Assume [λ⊤act, µ
⊤
act, γ

⊤
act]

⊤ collects the dual variables of the
active inequalities of Problem (7), [(b+A∆y)⊤act, y

⊤
act, (1−

y)⊤act]
⊤ collects the active constraints. The KKT (Karush-

Kuhn-Tucker) system of Equation (9) can be summarized
as 

Q A⊤
act I

µ
act −I

γ
act

Aact 0 0 0

Iµact 0 0 0

−Iγact 0 0 0



∆y

λact

µ
act

γact

 =


−g + ρ∇ϕ(ỹ)

−b
0

0

 .
Thus the optimal updating primal variable can be ex-
pressed as

∆y∗(ρ) = −Q−1
(
g − ρ∇ϕ(ỹ) + (A⊤λ)act + µact − γact

)
.

Notice the residual norm of ϕ(y) can be expressed as∥∥∥∥y⊤∇ϕ(ỹ)ỹ⊤∇ϕ(ỹ)

∥∥∥∥ =

∥∥∥∥ (ỹ + α∆y∗(ρ))⊤∇ϕ(ỹ)
ỹ⊤∇ϕ(ỹ)

∥∥∥∥
=

∥∥∥∥1 + α
∆y∗(ρ)⊤∇ϕ(ỹ)
ỹ⊤∇ϕ(ỹ)

∥∥∥∥
(10)

with α denotes the step size. As long as

α = − ỹ⊤∇ϕ(ỹ)
∆y∗(ρ)⊤∇ϕ(ỹ)

,

Equation (10) can provide a local super-linear convergence
(Nocedal and Wright (2006)) of the penalty function ϕ(y).

■

Note that this is an extension result of (Hall et al., 2021,
Section III-C) by considering the related active inequality.
We give the corresponding local convergence result since
the penalty parameter ρ can also be turned.

4.3 AO-SBQP

Integrated the structure of relaxed BQP, Algorithm 1
summarizes the full AO-SBQP steps for solving problem
(3). The main idea is to use the alternate optimization
method to solve the continuous and Boolean variables
respectively.

AO1 Derived from Frank et al. (2012), this variant of
Optimal Power Flow aims to maximize the linear electric
power guarantee objective with system input u, state x,
fixed ỹ and the power grid physical constraints (4).

AO2 The Hessian Q and gradient g are evaluated jointly
with (x̃, ũ, ỹ, λ̃). In order to search for a global maximizer
of Equation (7) without the complementarity constraints,
parameter ρ of Equation (6) is set as 0 in Step (2a). The

1 This step can be solved by any NLP solver.

Algorithm 1 AO-SBQP Method
Input: initial guess ỹ, initial x̄, ū, a termination tolerance ϵ > 0, an
initial factor ρ > 0 and update rate β > 1.
Repeat:

(1) Linear Optimal Power Flow (AO1): Solve an optimization
problem consists of (3a) and (3b) with given ỹ. Then output
optimal power system decision variables x̃, ũ. 1

(2) Sequential BQP (AO2):
(a) Globally Search: Solve QP consists of (7) with zero

penalty parameter. Output optimal switch variable ŷ.
(b) Update Penalty Function Approximate:

ϕ(y) ≈ ϕ(ŷ) + (y − ŷ)⊤∇ϕ(ŷ)
= (ϕ(ŷ)− ŷ⊤∇ϕ(ŷ)) + y⊤∇ϕ(ŷ).

(c) Locally Search: Maximize the penalty QP (7).
(d) Line Search and Inner Termination Criterion:

α = StepLength(ŷ, ỹ, ρ);
ŷ ≈ ŷ + α(ỹ − ŷ).
Check if |ϕ(ŷ)| ≤ ϵ, if not, go to Step (2e); if yes, ỹ ← ŷ

and go to Step (3).
(e) Penalty Parameter Update:

ρ = β · ρ and return Step (2a)
(3) Outer Termination Criterion: Check if

∥((x̃, ũ)|ỹ)− (x̄, ū)∥ ≤ ϵ,

if not, go back to Step (1) and set (x̄, ū) = ((x̃, ũ)|ỹ), ȳ = ỹ; if
yes, output the result.

Output: (x∗, u∗, y∗)← (x̃, ũ, ỹ).

later steps aiming to asymptotically meet Equation (5) by
increasing ρ in Step (2e). Note that, both Step (2a) and
Step (2c) are simple convex QP which can be solved by any
stable QP solver. We refer (Zhu and Du, 2022, Section III)
as a reference for more details.

Remark 1. (Relaxation of AO2) For the robustness of
switching from AO2 to AO1, (7b) can be arbitrarily
replaced by the following Inequality (11) in Step (2a) and
Step (2c) which named as mixed AO2,

∑
k∈G

pgk −
∑
k∈D

ykp
d
k ≥ 0∑

k∈G

qgk −
∑
k∈D

ykq
d
k ≥ 0∑

k∈D

ykq
d
k −

∑
k∈G

qgk ≥ 0.

(11)

Or even, in some cases, the entire AO2 process can be
replaced by solving the relaxed AO2 (12) module below,

max
y

∑
k∈D

y2krkp
d
k s.t. (11), (3c). (12)

5. NUMERICAL RESULT

In this section, we illustrate the numerical result of AO-
SBQP method drawing upon the modified 30-bus power
network. The power sources of microgrid are considered
into the system.

5.1 Data and Implementation

The problem data is obtained from MATPOWER dataset
Zimmerman et al. (2011) and the implementation of Al-
gorithm (1) relays on Casadi-v3.5.5 with IPOPT (An-
dersson et al. (2019)). Though MATPOWER repository is for
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transmission networks which are high voltage networks,
the mathematical model of microgrid is same.

In the modified 30-bus case, G = {1, 2, 13, 22, 23, 27}. To
create a demand-to-power mismatch scenario, we increase
the active and reactive power demands of buses with
loadby 2.5 p.u. (per unit) and 0.7 p.u. respectively. The
lower and upper bounds of reactive power inputs are
reduced to half of the previous ones while upper bound
of active ones are reduced to 70%. In addition, rk’s are
randomly set into five levels from 1 to 5 for each demand
and the criterion (i.e. complementarity tolerance) is set as
10−6. Problem (3) consists 60 status, 12 system inputs and
30 switch variables when all buses contain consumers.

Fig. 2. Modified IEEE 30-bus system from Christie (2000).

Since we did not set multi demands for each bus, this indi-
cates |D| = |N |, and (7b) is going to be an overdetermined
system. Therefore our implementation focus on the other
three relax versions of AO2 mentioned in Remark 1.

5.2 Numerical Comparison

In this section, we show the comparison of Algorithm (1)
with different variations of AO2. Note that all the vari-
ations consist inequality constraints (11), (7c), (7d), and
the only difference are the objectives, a) Mixed: (7a),
b) Relaxed I:

∑
k∈D y

2
krkp

d
k − ρϕ(y) , c) Relaxed II:∑

k∈D y
2
krkp

d
k − ρ∇ϕ(ỹ)⊤y.

1 2 3

Iteration step

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Mixed

Relaxed I

Relaxed II

Fig. 3. Convergence of y with three variations of AO2.

Figure (3) and Figure (4) shows the convergence of the
switch variable y and the complementarity satisfaction
ϕ(y) respectively. It can be seen that even if the dimension
of y is 30, all the variations of SBQP can converge to
the given complementarity tolerance in only a few steps
but converge to different solutions. This shows completely
different properties than the B&B based solvers.

1 2 3

Iteration step

10
-8

10
-6

10
-4

10
-2

10
0

|
(y

)|

Mixed
Relaxed I
Relaxed II

Fig. 4. Convergence of ϕ(y) with three variations of AO2.

Table 1. Convergence Comparison

Method Mixed Relaxed I Relaxed II

|ϕ(y)| 1.7e-07 1.0e-06 2.2e-08

Time(s) 0.021 0.046 0.019

Iteration 2 2 2

Table 1 shows the comparison among complementarity
satisfaction, operation time and iteration by using different
variations. It can be seen that all indicators of the three
methods are similar which is different from the results seen
in Zhu and Du (2022). Since the three relaxation variations
in this paper decrease the number of inequality constraints
in AO2 that induce it easier to solve. Notice that, due to
the nonlinear structure of (3a), the implementation is more
complex than (2a), therefore only AO1 benefits from the
reformulation of (3a).

Table 2. Performance Comparison

Method Mixed Relaxed I Relaxed II

Objective 5.421 2.428 5.877∑
k∈D

ykp
d
k (p.u.) 1.567 0.825 1.592∑

k∈D
ykq

d
k (p.u.) 0.702 0.347 0.709

Table 2 shows the comparison of final performance com-
parison by using different methods. As can be seen, dif-
ferent variations converge to different local optimum. At
least in this case, Relaxed II gets a bit better performance
than the other two and Relaxed I is a bit conservative.
Note that, both Table 1 and Table 2 show the benefits of
the approximate BQP method (Mixed and Relaxed II).

Table 3. Optimal Power Inputs

Bus # 1 2 13 22 23 27

pg (p.u.) 0.400 0.400 0.134 0.250 0.150 0.275

qg (p.u.) -0.037 0.161 0.213 0.246 0.070 0.125

Table (3) shows the numerical result of optimal system
inputs by using Relaxed II based Algorithm (1). The active
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demands relate with bus {1,2,4,9,10,11,12,13,14,16,17,18,
21,22,23,24,25,26,30}.

6. CONCLUSION

In this paper, we proposed an effective and fast conver-
gence method named AO-SBQP to optimize microgrid
demand shut-offs problems. Importantly, local convergence
theory of approximate BQP has been proposed. Moreover,
a numerical result on modified IEEE 30-bus case study
illustrates the potential of AO-SBQP in this area. Different
from B&B and SDR, AO-SBQP can achieve a feasible local
optimal solution without tree storage structure or matrix
variables. Future research will investigate multistage op-
timal demand shut-offs and time varing priority of single
bus-multiple demands on larger case studies. Moreover,
the rank evaluating priority of each demand can vary with
time. Comparison of accuracy and computation time of
B&B and SDR will also be considered.
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