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1. INTRODUCTION

The safe and reliable operation and control of power sys-
tems with a large share of renewables requires reliable grid
models. In many cases topology information is available
while the line parameters are unknown or erroneous (Abur
and Expósito (2004); Kusic and Garrison (2004)). This
might lead to difficulties in predicting critical situations
which in turn can lead to black-outs and to substantial
socio-economic costs. At the same time, shutting down of
critical power systems infrastructure to perform identifi-
cation procedures is usually no viable option. Thus, online
algorithms for determining the parameters in electrical
power systems are of significant interest.

In the present paper, we consider the stationary AC power
system parameter estimation problem, i.e. the problem of
estimating line parameters of the AC power flow equations
neglecting transient phenomena. 2 More specifically, we
propose to tackle the problem via concepts stemming from
Optimal Experimental Design (OED).

Classical static power system parameter estimation can
roughly be categorized along two axis: first, methods con-
sidering only one time instant of measurements versus
methods using multiple ones; and second, methods si-
multaneously estimating states (voltage magnitude and
phase angle) and the parameters versus methods only
considering the parameters or following a sequential state-
parameter estimation procedure cf. (Abur and Expósito

1 This work was supported by ShanghaiTech University, Grant-
Nr. F-0203-14-012. Timm Faulwasser is now with: Department of
Electrical Engineering and Information Technology, TU Dortmund
University, Dortmund, Germany.
2 We refer to (Zhao et al. (2019)) for a recent overview on dynamic
power system parameter estimation.

(2004); Monticelli (1999); Zarco and Gómez-Expósito
(2000)). Bian et al. (2011) and Slutsker et al. (1996)
consider pure parameter estimation with multiple time
samples, whereas Quintana and Cutsem (1988) rely on
a single snapshot. This method is extended to multiple
snapshots in (Van Cutsem and Quintana (1988)). Slutsker
et al. (1996) present a version based on the Kalman fil-
ter including past measurements indirectly via the corre-
sponding a posteriori state estimate and the error covari-
ance matrix. Combined state and parameter estimation is
considered in (Liu et al., 1992). An approach for combined
topology/parameter estimation which seemingly does not
to fit in the above categorization was recently presented
in (Deka et al., 2016; Park et al., 2018).

Optimal experiment design as described by Pukelsheim
(1993); Franceschini and Macchietto (2008) appears to
have received only little attention in the power system
context. It is so far used in the context of measurement
placement only (Li et al., 2011). In contrast, OED is
frequently used in the context of parameter estimation for
linear and nonlinear dynamic systems, especially in the
context of chemical process system identification (Körkel
et al., 2004; Houska et al., 2015). Lemoine-Nava et al.
(2016) introduce a method of using OED for reducing
the degree of freedom of variables in the field of frame
material discovery; a method for reducing the volume of
high-throughput experiments based on OED was proposed
by Talapatra et al. (2018). Pronzato (2008) highlights
the strong relations between experimental design and
control such as the use of optimal inputs to obtain precise
parameter estimation.

Methods relying on a large number of samples include
more information into the estimation process and thus
yield a better performance compared to single snapshot
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techniques. Hence we focus on multiple snapshot tech-
niques here. There exists two approaches on how past
measurements are considered: One simple approach is to
incorporate the measurments of all sampling instances in
one big estimation problem which grows with the num-
ber of observed measurements. This leads to potentially
intractable estimation problems and therefore recursive
methods have been developed considering information
about past measurements as parameters in the current
estimation step. In turn this leads to real-time algorithms
which are able to estimate parameters while the system
is running. Prominent examples for these methods are
the recursive least-squares method or the Kalman filter
(Ljung, 1999).

This paper proposes an approach for applying methods
from optimal experimental design to the online estimation
of the admittance parameters in AC power grids. Section 2
recaps the AC power grid model. The main contribution
is presented in Section 3. By relying on available measure-
ments only, i.e. voltage and power measurements of the
grid, the proposed method can be categorized as a recur-
sive online estimator. A distinctive feature of our method
is that we design optimal generator power profiles—i.e.
excitations—such that as much information as possible
is extracted in a single estimation step while keeping the
power output at the consumer constant. This strategy en-
ables us to perform optimally designed experiments while,
at the same time, ensuring that the grid remains com-
pletely functional and delivers a constant power output
to the end-users. In Section 4, we compare our results
to a recursive estimator with constant input on a 5-bus
benchmark system. Our results indicate that the proposed
method outperforms classical recursive parameter estima-
tion techniques.

Notation: For a given a ∈ Rn and C ⊆ {1, ..., n},
(ak)k∈C ∈ R|C| stacks all k ∈ C elements. Similarly, for
a given A ∈ Rn×l and S ⊆ {1, . . . , n} × {1, . . . , l},
(Ai,k)(i,k)∈S ∈ R|S| denotes a vector stacking elements

Ai,k for all (i, k) ∈ S. Moreover, i =
√
−1 denotes the

imaginary unit, and hence z = Re(z) + i · Im(z).

2. AC POWER GRID MODEL

Let (N ,L, Y ) be a power grid with N = {1, . . . , N}
denoting the set of buses, L ⊆ N×N is the set of transmis-
sion lines, and Y ∈ CN×N is the sparse, complex-valued
admittance matrix. The admittance matrix is defined as

Yk,l =




∑
j �=k

(gk,j + i bk,j) if k = l,

− (gk,l + i bk,l) if k �= l,

where gk,l are the line conductances and bk,l are the
line susceptances for all transmission lines (k, l) ∈ L. In
general, not all buses are connected. Thus, for most real
networks the matrix Y can be expected to be sparse. Hence
we set gk,l = bk,l = 0 for all (k, l) /∈ L. For example, for
the 5-bus network in Figure 1 the nodes 3 and 5 are not
directly connected. 3

3 We use the per-unit system which is a standard normalization
procedure from power systems (Glover et al., 2012). The base-power
is 100MVA and the base-voltage is 230 kV. The base-frequency is

1 2 3

45

generator
consumer

5.2 p.u.

6 p.u.

1.7 p.u. 3 p.u.

2 p.u.

3 p.u.

4 p.u.

Fig. 1. Modified 5-bus system from Li and Bo (2010) with
4 generators and 3 consumers.

Let vk denote the voltage amplitude at the k-th node and
θk the voltage angle. Throughout this paper, we assume
that the voltage magnitude and the voltage angle at the
first node,

θ1 = 0 and v1 = const. ,

are fixed. This assumption can always be made without
loss of generality, since the power flow in the network
depends on the relative voltage angles θk − θl. Similarly,
the voltage v1 at the first node is regarded as the reference
voltage. Thus, because θ1 and v1 are given, the vector

x = (v2, θ2, v3, θ3, . . . , vN , θN )
�

is the state of the power system. In the following, we use
the auxiliary function

Pk(x, y) =v2k
∑
l∈Nk

(
gk,l

−bk,l

)

− vk
∑
l∈Nk

vl

(
gk,l bk,l

−bk,l gk,l

)(
cos(θk − θl)

sin(θk − θl)

)

in order to model the active and reactive power residuum
at the k-th node, where the shorthand

Nk = {l ∈ N | (k, l) ∈ L}
denotes the set of neighbors of the k-th node. Moreover,

y =

(
gk,l

bk,l

)

(k,l)∈L
∈ R2|L|

denotes the admittance parameter vector, that is, a vector
consisting of all non-zero components of the admittance
matrix Y that are off-diagonal. Notice that dim y = 2|L|
grows with the number of transmission lines.

The variables pdk and qdk denote the active and reactive
power demands, which are, for the sake of simplicity,
assumed to be known and constant. We set pdk = 0 and
qdk = 0, if there is no consumer at the k-th node. Moreover,
G ⊆ N is the set of generators in the system. The
associated generator active and reactive power at the k-th
node, with k ∈ G, are denoted by pgk and qgk, respectively.
Notice that the net active and reactive net power supply
at Node k are

unfortunately not given in the dataset (Li and Bo, 2010), but it is
also not needed as conductances and susceptances are given.
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the 5-bus network in Figure 1 the nodes 3 and 5 are not
directly connected. 3

3 We use the per-unit system which is a standard normalization
procedure from power systems (Glover et al., 2012). The base-power
is 100MVA and the base-voltage is 230 kV. The base-frequency is

1 2 3

45

generator
consumer

5.2 p.u.

6 p.u.

1.7 p.u. 3 p.u.

2 p.u.

3 p.u.

4 p.u.

Fig. 1. Modified 5-bus system from Li and Bo (2010) with
4 generators and 3 consumers.

Let vk denote the voltage amplitude at the k-th node and
θk the voltage angle. Throughout this paper, we assume
that the voltage magnitude and the voltage angle at the
first node,

θ1 = 0 and v1 = const. ,

are fixed. This assumption can always be made without
loss of generality, since the power flow in the network
depends on the relative voltage angles θk − θl. Similarly,
the voltage v1 at the first node is regarded as the reference
voltage. Thus, because θ1 and v1 are given, the vector

x = (v2, θ2, v3, θ3, . . . , vN , θN )
�

is the state of the power system. In the following, we use
the auxiliary function

Pk(x, y) =v2k
∑
l∈Nk

(
gk,l

−bk,l

)

− vk
∑
l∈Nk

vl

(
gk,l bk,l

−bk,l gk,l

)(
cos(θk − θl)

sin(θk − θl)

)

in order to model the active and reactive power residuum
at the k-th node, where the shorthand

Nk = {l ∈ N | (k, l) ∈ L}
denotes the set of neighbors of the k-th node. Moreover,

y =

(
gk,l

bk,l

)

(k,l)∈L
∈ R2|L|

denotes the admittance parameter vector, that is, a vector
consisting of all non-zero components of the admittance
matrix Y that are off-diagonal. Notice that dim y = 2|L|
grows with the number of transmission lines.

The variables pdk and qdk denote the active and reactive
power demands, which are, for the sake of simplicity,
assumed to be known and constant. We set pdk = 0 and
qdk = 0, if there is no consumer at the k-th node. Moreover,
G ⊆ N is the set of generators in the system. The
associated generator active and reactive power at the k-th
node, with k ∈ G, are denoted by pgk and qgk, respectively.
Notice that the net active and reactive net power supply
at Node k are

unfortunately not given in the dataset (Li and Bo, 2010), but it is
also not needed as conductances and susceptances are given.

Sk(u) =

(
pgk − pdk

qgk − qdk

)
if k ∈ G

and

Sk(u) =

(
−pdk

−qdk

)
if k /∈ G .

In the context of this paper, we regard the active and
reactive powers at all but the first generator

u =

(
pgk

qgk

)

k∈G\{1}

as an input that the grid operator can choose. Notice that
the conservation of energy must hold at all nodes, which
implies that the power residuum at the nodes must be
equal to the supplied power,

∀k ∈ N , Pk(x, y) = Sk(u) . (1)

In the literature equations (1) are known under the name
power-flow equations (Monticelli, 1999). At this point, it
is important to be aware of the fact that, because the
consumer demand is assumed to be constant and given,
the grid operator can choose u but needs to make sure
that the active and reactive power at the first generator
satisfy (

pg1

qg1

)
= P1(x, y) +

(
pd1

qd1

)
, (2)

i.e. the overall power balance holds. In the power systems
literature, Node 1 is commonly called the slack node
(Grainger and Stevenson, 1994). Typically, a large gen-
erator is connected to this node ensuring that the above
power balance can always be satisfied.

Remark 1. (Considering energy storage). Equation (2) can
alternatively be satisfied by installing a battery or other
storage devices at the first node, which supplies the active
and reactive power pg1 and qg1 . The advantage of intro-
ducing a storage device is that (2) can be satisfied even
if the generators temporarily do not match the consumer
demand.

In summary, the power flow equations can be written
compactly as

P (x, y) = S(u) , (3)

with shorthands

P = [P�
2 , . . . , P�

N ]� and S = [S�
2 , . . . , S�

N ]� .

Notice that

dim(P ) = dim(x) = 2(N − 1) .

Moreover, the active and reactive power flow in the trans-
mission line (k, l) ∈ L is given by

Πk,l(x, y) = v2k

(
gk,l

−bk,l

)

− vkvl

(
gk,l bk,l

−bk,l gk,l

)(
cos(θk − θl)

sin(θk − θl)

)
,

which also depends on the non-zero admittance matrix
coefficients y, Pk(x, y) =

∑
l∈Nk

Πk,l(x, y).

3. OPTIMAL EXPERIMENT DESIGN FOR
ADMITTANCE ESTIMATION

Next, we introduce a repeated Optimal Experiment Design
(OED) and parameter estimation procedure for estimating
the admittance matrix in AC power networks.

3.1 Maximum Likelihood Parameter Estimation

Throughout this paper we assume that the power flow
over the transmission lines as well as the system state x
can be measured. Therefore, we consider the measurement
function M : R2(N−1) × R2|L| → Rm, m = 2(|L|+N − 1)

M(x, y) =
[
x�, (Πk,l(x, y))

�
(k,l)∈L

]�
.

If the associated measurement error has a Gaussian dis-
tribution with zero mean and given variance Σ ∈ Rm×m,
Σ ∈ Sm++, the associated maximum likelihood estimation
problem for the unknown admittance coefficients y reads

min
x,y

1

2
‖M(x, y)− η‖2Σ−1 +

1

2
‖y − y−‖2

Σ−1
0

s.t. P (x, y) = S(u).
(4)

Here, we assume that y− ∈ Rm is a given initial parameter
estimate with given variance Σ0 ∈ Sm++ and η are (possibly
noisy) measurements associated with M(x, y).

3.2 Fisher Information

The power flow equation, P (x, y) = S(u), has in general
multiple solutions. For example, this equation is invariant
under voltage angle shifts. However, if the sensitivity
matrix 4

∂

∂x
P (x, y)

has full rank at an optimal solution (x, y) of (4) for a given
u, then we can use the implicit function theorem to show
that a locally differentiable parametric solution x�(y, u) of
the equation P (x, y) = S(u) exists. Moreover, this solution
satisfies

∂

∂y
x�(y, u) = −

[
∂

∂x
P (x, y)

]−1
∂

∂y
P (x, y)

and, the Fisher information matrix (Pukelsheim (1993)) of
the admittance estimation problem (4) reads

F(x, y, u) = Σ−1
0 + T (x, y, u)Σ−1T (x, y, u)� , (5)

where the shorthand

T (x, y, u) =
∂

∂y
M(x, y) +

∂

∂x
M(x, y)

∂

∂y
x�(y, u)

is used. The inverse of the Fisher information matrix,
F(x, y, u)−1, can be interpreted as a linear approximation
of the variance matrix of the posterior distribution of the
parameter y (Telen et al. (2013)). Because this variance
depends on the generator power inputs u, these inputs can
be used to improve the expected quality of the estimate by
using an optimal experiment design procedure, as outlined
below.
4 Conditions under which the matrix ∂

∂x
P (x, y) has full-rank can be

found in (Hauswirth et al., 2018), where linear indendence constraint
qualifications for AC power flow problems are discussed in a more
general setting.
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Algorithm 1 Optimal Experiment Design for Power
System State Estimation

Input: Initial guess y− and variance Σ−
0 � 0, a termina-

tion tolerance ε > 0, and an initial generator set-point u−.
Repeat:

1) Experiment Design: solve the OED problem (6) and
denote the optimal solution for the control input by u.

2) Collection of Measurements: set the active and reac-
tive power at the generators to u and take a measure-
ment η.

3) Maximum Likelihood Estimation: solve the maximum
likelihood estimation problem (4) for given u and
denote the optimal solution by (x, y).

4) Termination Check: If the trace of the variance is

sufficiently small, Tr
(
[F(x, y, u)]

−1
)
< ε, break and

return the parameter estimate y as well as its approx-
imate variance [F(x, y, u)]

−1
.

5) Update Step: Set y− ← y, Σ0 ← [F(x, y, u)]
−1

.
Moreover, we set u− ← u and return to Step 1).

3.3 Optimal Experiment Design for AC Power Networks

Next, we develop an OED procedure for improving the
accuracy of admittance estimation. Although there are
many OED design objectives possible, we focus on the
A-design criterion, because the trace of a matrix can
be efficiently evaluated and differentiated without much
computational overhead (Telen et al., 2013, 2014)). Now,
the OED problem at hand reads

min
x,u

Tr
([

F(x, y−, u)
]−1

)
+ ρ‖u− u−‖22

s.t.




P (x, y−) = S(u)

u ≤ u ≤ u

x ≤ x ≤ x

u1 ≤ P1(x, y
−) +

(
pd1

qd1

)
≤ u1

.
(6)

Here, y− denotes the current parameter estimate and u−

denotes the old generator set point used for regularization
with regularization parameter ρ � 1. Moreover, the
lower and upper bounds u, u are introduced in order to
enforce upper and lower bounds on the generator power.
Similarly, the lower and upper bounds x, x are used to
model physical limitations on the voltage magnitude and
angle. The proposed OED approach to power system state
estimation is summarized in Algorithm 1.

Remark 2. (Termination in finitely many steps).
Because we assume measurements of the power flow over
all transmission lines, it is clear that all admittance coeffi-
cients are observable. In other words, the matrix T (x, y, u)
always has full-rank—independent of how one chooses u.
Thus, it follows from (5) and from the update of Σ0 in
Step 5) of Algorithm 1 that the Fisher information is
strictly monotonically increasing, which, in turn, implies
that Algorithm (1) terminates after a finite number of
iterations.

Initialize u−, y− and Σ−
0 .

Solve OED problem (6)
for given u−, y− and Σ−

0 .

Collect new measurements η
by applying u.

Solve MLE problem (4) for given
u, η, y−,Σ−

0 , and compute Σ0.

Tr(Σ0) < ε

Terminate with y and Σ0.

No

(u, y, Σ0)

u

Yes

η

(y,Σ0)

Fig. 2. Flow chart of Algorithm 1.

Remark 3. (Ensuring power balance). Note that though
the algorithm varies the active and reactive power set-
points pgk and qgk, the consumers are not affected by the
proposed estimation method as power balance is enforced
via the power flow equations (3).

4. NUMERICAL RESULTS

Next we illustrate the performance of Algorithm 1 drawing
upon the modified 5-bus system from (Li and Bo, 2010)
shown in Figure 1.

4.1 Implementation and data

The problem data is obtained from the MATPOWER dataset
(Zimmerman et al., 2011). As discussed in Section 2, we
use bus 1 as reference with fixed v0 and θ0.

We consider measurements M(x(ȳ, u�), ȳ) + χ with addi-
tive Gaussian noise χ, which has zero mean and covariance
10−4 I. Here, ȳ denotes the ground truth of y (i.e. the
line parameters from the MATPOWER dataset) and I is the
identity matrix. Furthermore, we use ρ = 8 · 10−4 as
regularization parameter in Step 1 of Algorithm 1. We
initialize y− with a non-zero vector with small norm to
avoid numerical difficulties. Apart from evaluating the to-
tal variance of the OED estimator Tr(V ), we also compute
the mean relative error of the estimated parameters y via

MREg =
1

|L|
∑

(k,l)∈L

|gk,l − ḡk,l|
|ḡk,l|

,

MREb =
1

|L|
∑

(k,l)∈L

|bk,l − b̄k,l|
|b̄k,l|

.
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System State Estimation

Input: Initial guess y− and variance Σ−
0 � 0, a termina-

tion tolerance ε > 0, and an initial generator set-point u−.
Repeat:

1) Experiment Design: solve the OED problem (6) and
denote the optimal solution for the control input by u.

2) Collection of Measurements: set the active and reac-
tive power at the generators to u and take a measure-
ment η.

3) Maximum Likelihood Estimation: solve the maximum
likelihood estimation problem (4) for given u and
denote the optimal solution by (x, y).

4) Termination Check: If the trace of the variance is

sufficiently small, Tr
(
[F(x, y, u)]

−1
)
< ε, break and

return the parameter estimate y as well as its approx-
imate variance [F(x, y, u)]

−1
.

5) Update Step: Set y− ← y, Σ0 ← [F(x, y, u)]
−1

.
Moreover, we set u− ← u and return to Step 1).

3.3 Optimal Experiment Design for AC Power Networks

Next, we develop an OED procedure for improving the
accuracy of admittance estimation. Although there are
many OED design objectives possible, we focus on the
A-design criterion, because the trace of a matrix can
be efficiently evaluated and differentiated without much
computational overhead (Telen et al., 2013, 2014)). Now,
the OED problem at hand reads

min
x,u

Tr
([

F(x, y−, u)
]−1

)
+ ρ‖u− u−‖22

s.t.




P (x, y−) = S(u)
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u1 ≤ P1(x, y
−) +

(
pd1

qd1

)
≤ u1

.
(6)

Here, y− denotes the current parameter estimate and u−

denotes the old generator set point used for regularization
with regularization parameter ρ � 1. Moreover, the
lower and upper bounds u, u are introduced in order to
enforce upper and lower bounds on the generator power.
Similarly, the lower and upper bounds x, x are used to
model physical limitations on the voltage magnitude and
angle. The proposed OED approach to power system state
estimation is summarized in Algorithm 1.

Remark 2. (Termination in finitely many steps).
Because we assume measurements of the power flow over
all transmission lines, it is clear that all admittance coeffi-
cients are observable. In other words, the matrix T (x, y, u)
always has full-rank—independent of how one chooses u.
Thus, it follows from (5) and from the update of Σ0 in
Step 5) of Algorithm 1 that the Fisher information is
strictly monotonically increasing, which, in turn, implies
that Algorithm (1) terminates after a finite number of
iterations.
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Remark 3. (Ensuring power balance). Note that though
the algorithm varies the active and reactive power set-
points pgk and qgk, the consumers are not affected by the
proposed estimation method as power balance is enforced
via the power flow equations (3).

4. NUMERICAL RESULTS

Next we illustrate the performance of Algorithm 1 drawing
upon the modified 5-bus system from (Li and Bo, 2010)
shown in Figure 1.

4.1 Implementation and data

The problem data is obtained from the MATPOWER dataset
(Zimmerman et al., 2011). As discussed in Section 2, we
use bus 1 as reference with fixed v0 and θ0.

We consider measurements M(x(ȳ, u�), ȳ) + χ with addi-
tive Gaussian noise χ, which has zero mean and covariance
10−4 I. Here, ȳ denotes the ground truth of y (i.e. the
line parameters from the MATPOWER dataset) and I is the
identity matrix. Furthermore, we use ρ = 8 · 10−4 as
regularization parameter in Step 1 of Algorithm 1. We
initialize y− with a non-zero vector with small norm to
avoid numerical difficulties. Apart from evaluating the to-
tal variance of the OED estimator Tr(V ), we also compute
the mean relative error of the estimated parameters y via

MREg =
1

|L|
∑

(k,l)∈L

|gk,l − ḡk,l|
|ḡk,l|

,

MREb =
1

|L|
∑

(k,l)∈L

|bk,l − b̄k,l|
|b̄k,l|

.

Figure 3 shows the mean relative error MREg and MREb

over the iteration index k for two different methods: For
OED and for OED with a constant input u generated in
the first iteration of Algorithm 1.
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Fig. 3. Mean relative errors MREb (solid line) and MREg

(dashed line) as obtained by Algorithm 1. The dotted
line and dash-dotted correspond to the corresponding
mean relative errors that are obtained by running the
estimation without optimally exciting the active and
reactive power at the generators.

The latter approach is similar to a standard recursive
least-squares method. One can see that with the one-shot
estimate after the first iterate, the relative error is around
80%. The error can be reduced to a level of around 1% after
a couple of iterations. One can see that the performance
of using an optimal input yields a considerably better
performance. Moreover, the strong decrease in MREg and
MREb after several iterations in both methods underlines
the importance of techniques using multiple snapshots.

Table 1. Line parameter estimation results [S].

Index Conductance Conductance Susceptance Susceptance

true value estimate true value estimate

(1, 2) 3.523 3.515 -35.235 -35.233

(1, 4) 3.257 3.274 -32.569 -32.546

(1, 5) 15.470 15.364 -154.703 -154.832

(2, 3) 9.168 9.725 -91.676 -91.023

(3, 4) 3.334 3.319 -33.337 -33.347

(4, 5) 3.334 3.351 -33.337 -33.329

Table 1 shows the ground truth ȳ and the OED estimation
result after 100 iterations. One can see that in all cases
the relative error is below 6%, the MREg is 1.41% and
the MREb is 0.0985%. Notice that the maximum absolute
error is 0.557 Siemens.

Figure 4 shows Tr(V (u, y−)) over the iterates k. One can
see a monotonic decrease up to a level of 10−1 within
100 iterations. The blue solid line represents Tr(V (u, y−))
using Algorithm 1, and the red dashed line corresponds to
the traditional recursive least square method.
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Fig. 4. Total variance of the estimation error Tr(V (u, y−))
obtained by Algorithm 1 (solid line) and by running
the estimation without optimally exciting the active
and reactive power at the generators (dashed line).
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Fig. 5. Optimal active power inputs for all generators as
obtained by Algorithm 1.

Figures 5 and 6 show the optimal input for active and
reactive power of the three controllable generators in
the 5-bus system. One can see that after after around
15 iterations, the input remains constant because of the
second term in Step 1) of Algorithm 1. As the Fisher
information matrix F is strictly monotonically increasing
its inverse is strictly monotonically decreasing. With that,
the second term in problem (6) starts dominating as
Algorithm 1 proceeds and thus the change in the optimal
input decreases.

5. CONCLUSION

This work proposed an approach to online power system
parameter estimation for the AC grids based on techniques
from optimal experimental design. Our simulation of a 5-
bus AC power system shows that the optimal generator
excitation as computed by the proposed method leads to
a considerably higher estimation accuracy of the system
parameters compared to a recursive least-squares estima-
tion without such excitations. Specifically, we are able to
decrease the mean relative error to less than 1% in a cou-
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Fig. 6. Optimal reactive power inputs for all generators as
obtained by Algorithm 1.

ple of iterations when considering Gaussian measurement
noise with a variance of 10−4 for all the components of the
measurement function M .
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