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Abstract— Mathematical Programs with Complementarity
Constraints (MPCC) are critical in various real-world applica-
tions but notoriously challenging due to non-smoothness and
degeneracy from complementarity constraints. The ℓ1-Exact
Penalty-Barrier enhanced IPOPT improves performance and
robustness by introducing additional inequality constraints and
decision variables. However, this comes at the cost of increased
computational complexity due to the higher dimensionality and
additional constraints introduced by the centralized formu-
lation. To mitigate this, we propose a distributed structure-
splitting reformulation that decomposes these inequality con-
straints and auxiliary variables into independent sub-problems.
Furthermore, we introduce Augmented Lagrangian Alternating
Direction Inexact Newton (ALADIN)-β, a novel approach that
integrates the ℓ1-Exact Penalty-Barrier method with ALADIN
to efficiently solve the distributed reformulation. Numerical
experiments demonstrate that even without a globalization
strategy, the proposed distributed approach achieves the fast
convergence while maintaining high precision.

I. INTRODUCTION

Mathematical Programs with Complementarity Con-

straints (MPCC) [1] are a class of optimization problems in-

corporating complementarity constraints. They have become

a valuable modeling framework in control theory, particu-

larly for optimization-based control problems involving non-

smooth dynamical systems [2] and hybrid systems [3]. Key

challenges in optimal control, such as trajectory optimization

for contact-aware robotic manipulators [4], logic-based con-

trol in chemical processes [5], and mixed Boolean optimiza-

tion for smart grids [6], can be systematically reformulated as

MPCC through a unified framework [7], thereby leveraging

complementarity structures to encode non-smooth physical

and logical constraints. To address degeneracies in such

problems, several solution methods have been proposed [8].

Notably, a method was introduced that bypasses direct solu-

tion of the original problem by utilizing sequential convex
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programming to solve penalty sub-problems derived from

linear complementarity quadratic programs, with penalty

parameters adaptively adjusted through homotopy [9], [10].

Building on these foundations, a subsequent study extends

the original method to tackle a general mixed-integer non-

linear problem arising from antenna selection optimization

in a sequential quadratic programming (SQP) fashion [11].

Additionally, [12] applied an ℓ1-exact penalty strategy to

handle complementarity constraints, coupled with the penalty

parameter update strategy to address degenerate problems

with IPOPT. This integration demonstrates improved speed

and robustness on standard MPCC benchmarks by intro-

ducing additional inequality constraints and decision vari-

ables. However, as a centralized approach, this ℓ1-strategy

inherently struggles with increased computational complex-

ity due to higher dimensionality and additional constraints.

As problem sizes grow, memory constraints and processing

bottlenecks further limit its scalability. This motivates the

exploration of distributed optimization (DO) for efficient

MPCC solving.

DO algorithms have become essential for tackling large-

scale engineering problems [13]–[16] by mitigating the curse

of dimensionality through decomposition into parallelizable

sub-problems, improving scalability and reducing communi-

cation overhead. They typically follow two main approaches:

primal and dual decomposition [17]. Dual decomposition

methods, particularly Alternating Direction Method of Multi-

pliers (ADMM) [16] and Augmented Lagrangian Alternating

Direction Inexact Newton (ALADIN) [18]–[21], offer rigor-

ous theoretical convergence guarantees and exhibit practical

effectiveness in DO. Theoretically, ALADIN synthesizes

the distributed coordination efficiency of ADMM with the

high precision of SQP, guaranteeing global convergence

for convex problems [22] and local convergence for non-

convex problems [18]. Recent advancements like ALADIN-

Prox [23], integrate proximal regularization with ALADIN,

extending this to global convergence in non-convex settings

with preserved complexity. In practice, ALADIN exhibits

exceptional performance in large-scale engineering appli-

cations, primarily categorized into three types: a) spatial-

splitting-based optimization problems (e.g., optimal power

flow) [14], [15], [24], b) time-splitting-based optimization

problems (e.g., model predictive control (MPC) and moving

horizon estimation (MHE)) [25]–[28], and c) the distributed

reconstruction of non-summation centralized optimization

[29], also known as structure-splitting-based optimization.

The remarkable numerical performance of ALADIN relies

on the fulfillment of regularity conditions such as the Linear



Independence Constraint Qualification (LICQ) and Second-

Order Sufficiency Conditions (SOSC), yet these conditions

are inherently violated in degenerate problems like MPCC.

Specifically, MPCC often violate standard constraint qualifi-

cations (CQ) at every feasible point, due to the non-convexity

and non-smoothness introduced by the complementarity con-

straints. To the best of our knowledge, existing research on

ALADIN has not addressed MPCC. This work proposes an

enhanced ALADIN framework tailored for MPCCs, aiming

to bridge this methodological gap.

Building on the ℓ1-penalty method [12] and the structure-

splitting-based optimization of ALADIN [29], we propose

a novel DO algorithm, ALADIN-β, for solving MPCC

problems. First, following the approach in [12], the ℓ1-exact

penalty method is applied to handle the non-smooth and non-

convex complementarity constraints, and then a universally

applicable structure-splitting paradigm is proposed for the

resulting general nonlinear programming (NLP) problems,

see Section III. Next, we propose ALADIN-β for solving

the distributed problems derived from the structure-splitting

process, see Section IV. Finally, representative numerical

examples are compared with existing state-of-the-art solvers

to validate the effectiveness and efficiency of ALADIN-β,

see Section V.

II. PRELIMINARIES

This section begins with a review of NLP with orthogo-

nality constraints. We then revisit the foundation of the ℓ1-

exact penalty-barrier-based interior-point method, an efficient

centralized approach for solving MPCC. Finally, we provide

an overview of the ALADIN algorithm, a powerful algorithm

designed for large-scale distributed optimization.

A. Problem Formulation

An NLP with orthogonality constraints can be formulated

as follows,
min
x∈Rn

f(x) (1a)

s.t. g(x) = 0, (1b)

x ≤ 0. (1c)

Here, f : Rn → R and g : Rn → R are all assumed to be

twice continuously differentiable. Moreover, equation (1b)

defines the orthogonality constraints of the form g(x) =
G(x)⊤H(x), where G : Rn → R

ng , H : Rn → R
ng are

twice continuously differentiable. For simplicity, this work

focuses on linear inequality constraints. However, leveraging

the ALADIN framework [18], future extensions will address

more general inequality constraints.

Remark 1 MPCC are considered as a class of degenerate

NLPs, where redundant constraints violate CQs1. Typically,

1Common CQs include LICQ and the weaker Mangasarian-Fromovitz
Constraint Qualification (MFCQ) [30]. While LICQ (sufficient but not nec-
essary) ensures the existence of bounded and unique Lagrange multipliers
by requiring linearly independent active constraint gradients, the weaker
MFCQ guarantees only the boundedness of the multipliers. Despite being
less stringent, MFCQ plays a crucial role in the convergence of most NLP
solvers due to its wider applicability in degenerate problems.

the complementarity constraints in MPCC, formulated as

0 ≤ G(x) ⊥ H(x) ≥ 0, can be equivalently expressed

via smooth constraints: G(x)⊤H(x) = 0, G(x) ≥ 0 and

H(x) ≥ 0. Active set methods resolve small-scale degenera-

cies effectively, yet their combinatorial complexity escalates

with dimensionality. Conversely, interior-point methods like

IPOPT [31] regularize constraints globally under localized

degeneracy assumptions but struggle with numerical insta-

bility due to inconsistent constraint linearizations.

B. The ℓ1-Exact Penalty-Barrier-Based Reformulation

To tackle the aforementioned challenges in solving prob-

lem (1), we review an improved interior-point method in this

section. This method systematically mitigates degeneracy-

induced issues while preserving numerical robustness across

problem scales.

By incorporating the inequality constraint (1c) into the ob-

jective function using barrier terms, we formulate a sequence

of barrier problems whose solutions asymptotically converge

to those of (1) as the barrier parameter µ approaches zero2.

To further penalize the equality constraint (1b), we yield the

combined non-smooth ℓ1-penalty term3 with a parameter ρ,

minimize
x∈Rn

f(x)− µ

n∑

i=1

ln(−xi) + ρ‖g(x)‖1, (2)

where µ ∈ R>0 is the barrier parameter and ρ ∈ R>0 is

the penalty parameter. However, the non-smoothness induced

by the ℓ1-penalty term complicates the minimization process,

necessitating specialized non-smooth optimization strategies.

To address this, [12] introduces auxiliary variables p and

n to augment the equality constraints, resulting in a smooth

reformulation of problem (2):

min
x∈Rn;p,n∈Rm

f(x)− µ

n∑

i=1

ln(−xi) + ρ(p+ n)⊤e

s.t. g(x)− p+ n = 0, p ≥ 0, n ≥ 0,

(3)

where e = [1, 1, · · · , 1]⊤ ∈ R
m denotes a vector of

appropriate dimension filled with ones. Crucially, the refor-

mulated equality constraints maintain full-rank properties,

ensuring the LICQ holds even at rank-deficient points of

the barrier problem. This enables robust computation of

steps for degenerate problems. Replacing the proposed ℓ1-

exact penalty-barrier phase in the IPOPT solver has been

shown to significantly improve success rates for degenerate

problems and accurately solve a practical MPCC problem

in a single optimization stage [12]. This approach avoids

numerical challenges associated with non-smooth terms but

comes at the cost of increased problem dimensions and the

need for an additional penalty parameter update strategy.

2Under the MFCQ, the sequence of local minimizers for the barrier-
augmented function asymptotically converges to the optimal solution x⋆ of
(1) as µ → 0.

3To relax the restrictive LICQ, we reformulate problem (1) into an exact
ℓ1-penalty-barrier framework, where the equivalence to the original problem
is preserved if ρ ≥ ρ⋆ := ‖(λ⋆, z⋆)‖∞ with λ⋆, z⋆ denoting optimal dual
variables [30].



C. Fundamentals of ALADIN for QP

In this section, we review how ALADIN, a DO algorithm,

handles large-scale QPs with inequality constraints [29].

Before presenting ALADIN, we define the local update

notation: (·)+ denotes the value after the update, while (·)−

represents the value before the update.

Considering a strictly convex quadratic programming

problem
min
x∈Rn

f̃(x)

s.t. x ≤ x ≤ x,
(4)

with f̃(x) = 1
2x

⊤Qx, where Q ≻ 0, x and x denote the

lower and upper bound of x, respectively. By introducing an

auxiliary variable z, the inequality constraints of problem

(4) can be incorporated into the objective function in a

reformulated manner,

min
x,z

f̃(x) + g̃(z) s.t. x = z | λ, (5)

where the function

g̃(z)
def
=

{

0 if z ≤ z ≤ z

∞ otherwise

}

(6)

is defined as the indicator function, with z = x and

z = x, and λ denotes the dual variable with respect to

the coupling constraint. The customized ALADIN [29] for

solving problem (4) initializes primal-dual variables (x, z, λ)
and selects positive-definite matrices Σ ≻ 0 and K ≻ 0,

proceeding as follows,















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






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





v+ = argmin
v
f̃(v) + λ⊤v + 1

2‖v − x‖2Σ;

w+ = argmin
w
g̃(w)− λ⊤w + 1

2‖w − z‖2K ;

(x+, z+, λ+)

=















min
x+,z+

1
2

∥

∥

∥

∥

∥

[

x+ − v+

z+ − w+

]∥

∥

∥

∥

∥

2

H,K

+

[

∇f̃(v+)

∂g̃(w+)

]⊤[

x+

z+

]

s.t. x+ = z+ | λ+.
(7)

Here, ∇f̃ and ∂g̃ denote the gradient and subgradient of f̃

and g̃, respectively, while the matrices H ≻ 0 and K ≻ 0
are local Hessian approximations of f̃ and g̃. Note that,

ALADIN alternates between parallel sub-problems solving

at sub-nodes to update v+ and w+, and coordination at

the central node to determine (x+, z+, λ+), iterating until

convergence. This study demonstrates the significant poten-

tial of ALADIN in solving large-scale problems, focusing

on solving convex QPs [29, Section IV-B]. Its extension

to non-convex optimization problems will be presented in

subsequent sections.

III. STRUCTURE-SPLITTING-BASED REFORMULATION

Building on Sections II-B and II-C, we introduce a

structure-splitting reformulation of problem (3) by incor-

porating auxiliary variables. The optimization variables are

grouped into independent blocks, resulting in a generalized

representation of the structure-splitting formulation as fol-

lows.

min
α,β,γ

φ(α, γ) + ϕ(β) + ψ(γ) (8a)

s.t. g(x)− q +m = 0, (8b)

x = β, m = n, p = q. (8c)

The composite variables are structured as α =
[x⊤, q⊤,m⊤]⊤ and γ = [p⊤, n⊤]⊤, where q and m

act as local replicas of the auxiliary variables p and n,

respectively, to enforce consensus among distributed sub-

problems. Furthermore, the auxiliary variable β represents

the local variables associated with the log-barrier term for

the inequality constraints in (3). To enhance numerical

stability, a relaxation parameter r is integrated into the

formulation, strategically designed to mitigate abrupt

gradient-driven oscillations near constraint boundaries.

Furthermore, the objective function (8a) is decomposed into

three distinct components, expressed as follows,

φ(α, γ)
def
= f(x) +

1

2
‖q − p‖

2
P +

1

2
‖m− n‖

2
M , (9a)

ϕ(β)
def
= −

n
∑

i=1

µi ln(r − βi), (9b)

ψ(γ)
def
= ρ(p+ n)⊤e−

ng
∑

i=1

µi(ln(r+pi)+ln(r+ni)) , (9c)

with r > 0, µi > 0, P ≻ 0, M ≻ 0. Sub-problem

(9a) is augmented by two proximal terms in q and m to

regularize the update step sizes near optimality. Inspired

by [29], the inequality constraints in (3) are reformulated

as relaxed log-barrier objectives, eliminating the need for

explicit feasibility detection. Refer to [29] for details.

By introducing the coupling matrices

A1
def
=





I|x| 0|x|×ng
0|x|×ng

0ng×|x| Ing
0ng×ng

0ng×|x| 0ng×ng
Ing



 ,

A2
def
=





−I|x|
0ng×|x|

0ng×|x|



 , A3
def
=





0|x|×ng
0|x|×ng

−Ing
0ng×ng

0ng×ng
−Ing



 ,

(10)

Problem (8) can then be represented as,

min
α,β,γ

φ(α, γ) + ϕ(β) + ψ(γ)

s.t. G(α) = 0 |κ,

A1α+A2β +A3γ = 0 |λ,

(11)

where G(α) = g(x)− q+m, κ represents the dual variable

of the first constraint and λ denotes the dual variable of the

coupling constraint.

Remark 2 Drawing inspiration from (5), we employ

an analogous technique to reformulate the inequality-

constrained problem (3) into a distributed reformulation (11)

by incorporating inequality constraints into the objective

function. This reformulation strategically eliminates the com-

putational overhead associated with infeasibility detection in

constrained optimization. Note that, although the formulation



of problem (8) introduces new variables and a modified ob-

jective function, its summation structure enables distributed

solving.

IV. ALADIN-β

In order to solve the reformulated distributed ℓ1-penalty-

barrier problem (11), we develop an efficient solution ap-

proach leveraging the ALADIN algorithm and detail its

implementation strategy.

A. Algorithm Development

We propose a novel algorithm, ALADIN-β, to solve (11).

The algorithm begins with an initial guess for all primal and

dual variables (α, β, γ, λ) in (11). It then iterates through the

following steps until the termination criteria are met. The

main steps of ALADIN-β are outlined below.

1) Choose proper initial values for the barrier and penalty pa-

rameter µ, ρ ≥ 0 and positive semi-definite scaling matrices

Σi ∈ S
nx

+ for all i ∈ {1, 2, 3}.

2) Solve the decoupled optimization problems in parallel,

• For Sub-problem 1:

α̂=argmin
α

φ(α, γ−)+λ⊤A1α+
1

2
‖α− α−‖2Σ1

s.t. G(α) = 0 | κ.
(12)

• For Sub-problem 2:

β̂=argmin
β

ϕ(β)+λ⊤A2β+
1

2
‖β − β−‖2Σ2

. (13)

• For Sub-problem 3:

γ̂=argmin
γ

ψ(γ)+λ⊤A3γ+
1

2
‖γ − γ−‖2Σ3

. (14)

3) Evaluate the sensitivity information for each sub-problem,

obtaining the gradient gi and Hessian Hi for all i ∈ {1, 2, 3}
based on their respective local optimal solutions, expressed

as follows,

∇αφ(α̂) = Σ1(α
− − α̂)−A⊤

1 λ−∇αG(α̂)
⊤κ, (15a)

∇βϕ(β̂) = Σ2(β
− − β̂)−A⊤

2 λ, (15b)

∇γψ(γ̂) = Σ3(γ
− − γ̂)−A⊤

3 λ. (15c)

Then choose symmetric Hessian approximations

H1 ≈ ∇2
α{φ(α̂, γ

−) + κ⊤G(α̂)} ≻ 0, (16a)

H2 ≈ ∇2
β{ϕ(β̂)}=diag

(

µi

(r − β̂i)2

)

≻0, (16b)

H3 ≈ ∇2
γ{ψ(γ̂)}=diag

(

µi

(r − p̂i)2
+

µi

(r − n̂i)2

)

≻0.

(16c)

4) Aggregate the sensitivity information from all sub-

problems to construct and solve the consensus QP problem

subject to equality constraints,4

4For QP problems with equality constraints, we can derive closed-form
solutions for updating the primal and dual variables using the first-order
KKT conditions. This allows the primal updates to be distributed to the
sub-nodes for internal updating, thereby further enhancing computational
efficiency for large-scale problems.

min
α+,β+,γ+

1

2

∥

∥

∥

∥

∥

∥





α+ − α̂

β+ − β̂

γ+ − γ̂





∥

∥

∥

∥

∥

∥

2

H

+





∇αφ(α̂)

∇βϕ(β̂)
∇γψ(γ̂)





⊤ 



α+ − α̂

β+ − β̂

γ+ − γ̂





s.t. C (α+ − α̂) = 0,

A1α
+ +A2β

+ +A3γ
+ = 0 | λQP.

(17)

Here the matrix H is a block diagonal matrix composed of

Hi, ∀i ∈ {1, 2, 3} from (16). Moreover, C = ∇αG(α)
⊤ =

(

∂g(x)
∂x

,−Ing
, Ing

)

denotes the Jacobian matrix of the local

equality constraints.

5) Update the primal variables α+ → α−, β+ → β−, γ+ →
γ−, as well as λ = λ + θ(λQP − λ) with θ = 1 for a full-

step update5. Verify whether the stopping conditions of the

algorithm are satisfied. If not, update the barrier parameter

µj , ρ and go to Step 2); otherwise, terminate the iteration.

Remark 3 The proposed algorithm ALADIN-β systemati-

cally decomposes the original problem into independent sub-

problems, enabling parallel computation. Sub-problem (12)

utilizes the values of p and n from the previous iteration

to solve the primary objective and equality constraints. As

detailed in Section II-B, its constraints are reformulated to

eliminate dependence on the LICQ. This property allows

ALADIN-β to avoid various numerical issues that arise

when solving systems with degeneracies. The subsequent two

sub-problems (see (13), (14)) are introduced to iteratively

refine the results from Sub-problem 1. Specifically, Sub-

problem (13) enforces inequality constraints through log-

barrier penalty terms, while Sub-problem (14) adaptively ad-

justs p and n to tighten equality constraint satisfaction. These

auxiliary sub-problems, designed with inequality-constrained

log-barrier formulations, exhibit simplified structures ensur-

ing analytical closed-form solutions and guaranteed positive

definiteness of their Hessian matrices. Moreover, incorporat-

ing proximal terms for q and m in the objective function

of Sub-problem (9a) not only improves its convexity but

also enhances the stability of algorithm convergence across

iterations.

Remark 4 Based on the reformulation in Section II-B,

ALADIN-β extends standard ALADIN by relaxing locally

LICQ and SOSC requirements [18]–[20], improving robust-

ness to degeneracies and enabling application to MPCCs.

It retains ALADIN’s distributed structure by decomposing

the problem into parallelizable sub-problems and solving

a simplified high-dimensional QP. In strongly coupled yet

structurally simple problems, ALADIN-β outperforms the ℓ1-

exact penalty-barrier phase of interior-point methods in dis-

tributed settings. Our smoothing-based MPCC reformulation

[12] broadens ALADIN’s applicability while preserving its

local convergence properties. A full convergence analysis

will be provided in an extended version of this work.

5For simplicity, only the full-step update is presented here. If the original
problem is highly nonlinear or the initial point is far from the optimal
solution, techniques such as line search or other globalization strategies can
be employed to improve convergence performance, as detailed in [18], [23].



V. NUMERICAL EXPERIMENT

This section presents simulation results demonstrating

the advantages of ALADIN-β for MPCC problems and

compares it with two variants of the ℓ1-penalized IPOPT

solver [12], referred to as IPOPT1 and IPOPT26, as well

as a baseline IPOPT-vanilla that directly solves the original

MPCC problem (1) without reformulation. Notably, we em-

phasize the QP step, as ALADIN tolerates inexact subprob-

lem solutions without compromising convergence, leading

to reduced computational effort supported by theoretical

analysis [20] and numerical evidence [28]. In IPOPT1, the

penalty parameter µ is updated after a single QP step, while

in IPOPT2, it is updated only after fully solving the current

barrier problem. The implementation of ALADIN-β is based

on Casadi-v3.6.7 with IPOPT and MATLAB 2024b.

Moreover, to eliminate the influence of heuristic tuning, all

the implemented algorithms update the parameters at a fixed

rate, where the barrier parameter µ = 10 (see (9)) decreases

by a factor of 0.2, and the penalty parameter ρ = 10 increases

by a factor of 4 at each update.

To clearly demonstrate the numerical performance of

ALADIN-β, we adopt a canonical MPCC example (see page

21 of https://www.syscop.de/files/2023ss/

nonsmooth_school/kirches_MPECs_2.pdf), pre-

sented as follows:

min
x̂,x̃∈Rn

1

2
‖x̂− e‖22 +

1

2
‖x̃− e‖22

s.t. x̂⊤x̃ = 0,

x � 0.

(18)

Here, x̂ and x̃ are n-dimensional column vectors, with

x = [x̂⊤, x̃⊤]⊤. Despite the convexity of the objective

function and inequality constraints, the equality constraints

introduce non-convexity and non-smoothness, violating CQs

and posing challenges for standard numerical algorithms.

Figure 1 illustrates the proposed ALADIN-β algorithm

solving problem (18), where x̂, x̃ ∈ R+. The problem

features two local minima at (0, 1) and (1, 0), along with

a relatively weak local maximum at the origin.

Here, we fix the total number of ALADIN-β iterations

to 100 and set the initial point to (1, 1). The trajectory

first moves toward the origin to satisfy the complementarity

constraints and, once these are nearly met, pivots toward

objective minimization, ultimately converging to the local

optimum (1, 0) of (18).

Figure 2 presents the convergence behavior of IPOPT1,

IPOPT2, IPOPT-vanilla, and ALADIN-β for solving the

MPCC problem (18) with x̂, x̃ ∈ R
10. The upper subplot

shows the convergence of the primal variable x. IPOPT2

6In ALADIN β, the parameters ρ and µ are updated at each iteration.
In contrast, IPOPT2 [12] updates these parameters only after solving the
current barrier problem to optimality for fixed values of ρ and µ. This
fundamental discrepancy in parameter update strategies renders a direct
performance comparison between the two methods inherently unfair. To
establish a more equitable basis for comparison, we introduce IPOPT1,
which follows the algorithmic framework proposed in [12] but incorporates
parameter updates for ρ and µ at every iteration, thereby aligning its update
scheme with that of ALADIN–β.
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Fig. 1: Iteration process of ALADIN-β on the two-

dimensional instance of problem (18).

exhibits slow convergence in the first 90 iterations, followed

by linear convergence to a precision of 10−8 after approx-

imately 180 iterations. In contrast, ALADIN-vanilla and

ALADIN-β both exhibit quadratic convergence, attaining

10−9 accuracy in 42 iterations and 10−10 accuracy within

the fewest iterations, respectively. The lower subplot tracks

the complementarity constraint residuals of (18). ALADIN-β

satisfies these constraints to 10−16 precision within approx-

imately 20 iterations, equiring the fewest iterations among

all methods. Notably, IPOPT-based methods incorporate

adaptive globalization strategies (such as the filter method)

to maintain convergence beyond 10−16 precision, achieving

higher accuracy at a consistent convergence rate compared to

ALADIN-β. Despite both IPOPT1 and ALADIN-β updat-

ing parameters after each QP step, the convergence curves

of IPOPT1 in Figure 2 show slow convergence.

In DO, the way local information is exchanged and utilized

typically limits the ability of the algorithm to achieve higher

convergence precision. However, as illustrated in Figure

2, the proposed ALADIN-β, by appropriately utilizing the

first- and second-order information as equation (15) and

(16), converges to an acceptable accuracy of 10−10 in

the fewest iterations, outperforming all the IPOPT-based

methods. Notably, as demonstrated in the presentation of AL-

ADIN (see https://www.uiam.sk/˜oravec/apvv_

sk_cn/slides/aladin.pdf, page 61), the ALADIN

algorithm significantly reduces CPU time per iteration for

MPC problems compared to conventional numerical methods

[25]. Since ALADIN-β inherits the structure of the standard

ALADIN (see Remark 3), it also holds the potential to reduce

the computational time required to solve MPCC problems.

VI. CONCLUSION

This work presents ALADIN-β, a novel distributed algo-

rithm that integrates exact-penalty methods to efficiently and

robustly solve MPCC problems in parallel. By systematically

avoiding failures caused by violated CQs in ill-conditioned

problems, ALADIN-β relaxes the LICQ requirements of

classical ALADIN, expanding its applicability. Numerical

https://www.syscop.de/files/2023ss/nonsmooth_school/kirches_MPECs_2.pdf
https://www.syscop.de/files/2023ss/nonsmooth_school/kirches_MPECs_2.pdf
https://www.uiam.sk/~oravec/apvv_sk_cn/slides/aladin.pdf
https://www.uiam.sk/~oravec/apvv_sk_cn/slides/aladin.pdf
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Fig. 2: Convergence comparison among ALADIN-β and two

types of IPOPT.

experiments on a benchmark MPCC demonstrates its su-

perior convergence speed and accuracy compared to state-

of-the-art NLP solver variants. Future work will focus on

formalizing convergence proofs, incorporating globalization

strategies, and developing adaptive parameter tuning to en-

hance robustness for complex MPCCs.
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