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Abstract— This paper presents computationally efficient al-
gorithms for solving nonlinear Moving Horizon Estimation
(MHE) problems, which face challenges due to the curse of
dimensionality. Specifically, we first introduce a distributed re-
formulation utilizing a time-splitting technique. Leveraging this,
we develop the Efficient Gauss-Newton Augmented Lagrangian
Alternating Direction Inexact Newton (ALADIN) algorithm to
improve efficiency. To address limited computational power in
some sub-problem solvers, we propose the Efficient Sensitivity
Assisted ALADIN, allowing inexact solutions without compro-
mising performance. Additionally, we propose a Distributed
Sequential Quadratic Programming (SQP) method for scenarios
with no computational resources for sub-problems. Numeri-
cal experiments on a differential drive robot MHE problem
demonstrate that our algorithms achieve both high accuracy
and computational efficiency, meeting real-time requirements.

I. INTRODUCTION

Moving Horizon Estimation (MHE) has attracted con-
siderable interest for its applications in differential drive
robots [1], unmanned aerial vehicles [2], and wireless com-
munication [3]; a comprehensive overview is provided in
[4]. Essentially, MHE is an optimization-based approach for
estimating the states of dynamic systems within a moving
time horizon, providing an effective framework for state
estimation in nonlinear and constrained dynamic systems.
Current MHE approaches mainly rely on centralized solvers,
yet these methods become computationally prohibitive as es-
timation complexity and the length of time horizon increase
- a challenge commonly described as the curse of dimension-
ality. To address this challenge, one promising approach is to
reformulate MHE as a distributed optimization problem and
adopt parallel algorithms for its solution. However, to the
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best of our knowledge, a suitable algorithm that efficiently
solves distributed MHE has not yet been identified.

A natural approach for solving the distributed optimization
reformulation of MHE is to adopt Augmented Lagrangian
Alternating Direction Inexact Newton (ALADIN) (5], a
distributed non-convex optimization algorithm known for
integrating the advantages of Alternating Direction Method
of Multipliers (ADMM) [6], [7] and Distributed Sequential
Quadratic Programming (SQP) [8]. This motivation arises
from ALADIN’s demonstrated success in efficiently address-
ing Model Predictive Control problem (MPC) [9], [10], [11],
[12], [13]- an optimization counterpart of MHE. ALADIN
exhibits global convergence for convex problems and local
convergence for non-convex problems [14], [15]-[17], with
[18] establishing a global convergence theory for ALADIN
in the context of non-convex problems. Typically, AL-
ADIN solves sub-problems using an appropriate nonlinear
programming (NLP) solver and coordinates information by
solving a coupled quadratic programming (QP) problem
[19]. However, directly applying standard ALADIN [20] to
MHE remains computationally expensive due to the inherent
coupled QP step required for coordinating distributed infor-
mation, rendering it unsuitable for the real-time requirements
of MHE. While a variant of ALADIN tailored for MPC [9]
might be considered, it targets general objective functions
(e.g., economic MPC [21]) rather than the specific least-
squares objective of MHE. Although a variant of ALADIN,
known as Gauss-Newton ALADIN [22], exists for handling
least-squares objectives, it remains computationally ineffi-
cient due to the aforementioned coupled QP step. Thus,
this gap motivates the following research question: Can
we develop computationally efficient variants of ALADIN
specifically tailored to nonlinear MHE?

Contributions

A. In this paper, we introduce a novel time-splitting-based
optimization framework for solving nonlinear MHE prob-
lems efficiently while maintaining accuracy. We first revisit
the nonlinear MHE formulation and propose a time-splitting-
based distributed reformulation, extending the temporal de-
composition concept originally developed for MPC [9]. Our
reformulation partitions the time horizon into multiple inde-
pendent sub-windows, significantly reducing sub-problems
dimensionality.

B. Leveraging this distributed reformulation, we develop
computationally efficient solutions within the ALADIN
framework. Specifically, to eliminate the computational over-
head associated with iterative QP solutions required in
ALADIN, we first derive a closed-form solution for the



QP step. Exploiting this closed-form solution, we propose
Efficient Gauss-Newton ALADIN, an accelerated variant of
Gauss-Newton ALADIN algorithm introduced in [22], which
achieves computational efficiency.

C. Considering practical scenarios where sub-problem
solvers possess limited computational power, we introduce
Efficient Sensitivity Assisted ALADIN, inspired by [23],
which allows the sub-problems step to be solved inexactly.

D. We further consider an extreme scenario wherein sub-
problem solvers have no computational capability. Under this
stringent condition, inspired by [24], we develop an Efficient
Distributed SQP that entirely eliminates explicit sub-problem
solving. Instead, it only evaluates first- and second-order
information of local objectives.

E. We conducted numerical benchmarks on a practical
nonlinear MHE problem involving the differential drive
robots. The results demonstrate that our Efficient Distributed
SQP achieves identical state estimation trajectories to those
obtained by CasADi with IPOPT [1]. Moreover, all three
proposed algorithms exhibit excellent stability in terms of it-
eration count and convergence precision. Notably, the fastest
algorithm achieves high precision in a remarkably short time.

II. FUNDAMENTALS OF THE MHE
A. Discrete Control System

In control systems, dynamic behavior is typically modeled
using discrete-time nonlinear equations, comprising state
and output equations that characterize system evolution and
observation relationships at time index n,

Tn+1 = f(xmun)’

Yn = h(zn) + vn. M

Here, x,, € RIz=! denotes the system state, u,, € Rlunl rep-
resents the control input, and y,, € R!¥=! stands for the mea-
sured output. Note that the measurement noise v,, follows a
zero-mean Gaussian distribution, i.e., v, ~ N(0, V'), where
V' is a positive-definite covariance matrix. Furthermore, the
nonlinear dynamics is defined by f : RlI#=lHlunl 5 Rlzal
and the nonlinear measurement function is expressed by
h: Rl#nl — Rlnl both of which are assumed to be twice
continuously differentiable.

B. Basics of MHE

Based on (1), at each time step [, given a prediction
horizon of length L, the following optimization problem
represents a formulation of MHE (see [1]):

l

1 . 2 1 2
min 3 fler-r = &1-rllp-aty ;L |h(zn) = ynlly -1
-1 -1 - (2)
1 ~ 2 1 2
3 0 ln =l 1ty S Jwnss = F@nyun) [
n=l—L n=Il—L
The optimization variable is defined as,
T T il
T = (wz—L7$l—L+1, s I ) )
3)

_ T T T\
U= \U—L,Uj—L415--+> U1 )

where Z;_j represents the prior state estimate [4, Section
4.2], P € Rlznlxlzal denotes the covariance matrix associ-
ated with the initial state estimation error, R € Rln|x|2xl
corresponds to the covariance matrix of the state noise, V €
RlynI>xlynl describes the covariance matrix of the observation
noise, and W € Rlun!xlunl characterizes the covariance
matrix of the control input variations. In this expression, the
optimization variables of (2) are x and u.

An alternative MHE formulation considers only x as
the optimization variable. Although w still appears in the
expressions, it is treated as a known constant. Based on this,
the simplified optimization problem is formulated as follows!
(see [28]):

l

.1 . 2 1 2
min— ||z;—r — Ti— _1t= h(xn) — ynll5 —
ing [|21-1 = &1-Llp— 2n§L|\( ) = Ynlly— @

St Tnt1 = f(Tn,un), Vn=I1—-L,...,1—1.

This paper focuses on the MHE optimization problem for-
mulated in (4).

III. DISTRIBUTED MHE REFORMULATION: A
TIME-SPLITTING-BASED APPROACH

This section introduces a time-splitting-based distributed
MHE framework built on (4). By partitioning the time hori-
zon into multiple independent sub-windows, this approach
significantly reduces the dimensionality of the sub-problems.

A. Components of the Time Splitting Reformulation

To mitigate computational complexity and enhance real-
time performance in problem (4), the time window [l — L, ]
is divided into NN consecutive sub-windows [9]. The first
(N —1) sub-windows each have a length of ¢ = | £ |, while
the last sub-window has a length of txy = L — (N — 1),
where N,t,tny € Nsg. Accordingly, the time range for the
i-th sub-window is given by [l — L + (i — 1)t,1 — L + it],
(i=1,2,...,N —1). For the last sub-window (i = N), the
time range is [l — L+ (N — 1)t,]. Importantly, the auxiliary
variable z = ((Zl)T,(ZQ)T7...7(ZN)T)T is introduced to
represent the boundary state of each sub-window. Here, z; =
(=7, (zf’)T)T with z¢ denoting the initial state of the i-
th sub-window, defined as z{ = z;_r1(;—1);- In subsequent
sections, x;_r (;—1)¢ Will be replaced by z;'. Meanwhile, zf
serves as a new auxiliary variable representing the terminal
state of the i-th sub-window.

The optimization variable X; associated with the local
optimization problem for the i-th sub-window is defined as:

X = (0T ) T (D)

where ;) represents the infernal states of the i-th sub-
window, such that i(i) S R‘z<i>|, and is expressed as:

X; e R,

j(')_{ (@i—p+(i—1yer1) 1o os(@—pya—1)") ] i=1,... ,N—1,
o=

T .
(@r—pr(v=1yt41) 5o s (@) T) i=N.

IFor the convenience of the subsequent expressions, this paper studies
MHE without inequality constraints. See [25]-[27] for a similar setting.
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Fig. 1: The time-splitting-based MHE

With the above definitions, a schematic diagram of the
time-splitting-based MHE, where 2! = z¢, | is illustrated in
Figure 1. Further details are provided in Section III-B.

The objective function for each sub-problem is represented
by J;(X;) : RIX:l — R, and the optimization problem for
the 7-th sub-window is formulated as follows, for ¢ = 1 and
1=N,

1 . 5 I—L+t—1 )
J1(X1):§HZ1—$17LHP—1+§ Z lh(z)—yjlly-1,
l e ®)
IXn) =5 3 e~ wl
j=l—L+(N—-1)t
fore=2,--- /N —1,
1 l—L+it—1
T(X) =5 D> lIhs) —ysllia 6)

j=l—L+(i—1)t

Analogous to the objective function formulation, the non-
linear dynamic equality constraints are partitioned into sub-
vectors independently as follows, for¢t=1,--- N — 1,
T py(i—1)e41— f (28 wim g (im1)t)
Lp—L4-(i—1)t+2 —f(l’l—L+(z‘—1)t+17 ul—L+(i—1)t+1)
Fi(Xi)= : ;

20— f(T1—Lit—1, W Lit—1)

)
for: = N:
Ti—L4(i—1)t+1 *f(Zﬂ U17L+(i71)t)
ivz—L+(i—1)t+2—f xl—L+(i—1)t+17UZ—L+(i—1)t+1)
Fi(Xi)= .
o —f(zi—1,w-1)
®

B. The Time Splitting Reformulation of MHE

Consequently, based on (5)-(8), the time-splitting-based
formulation of MHE can be represented as:
min

N
(X2} ; )
S.t. J:Z(Xl) =0 |Ni7

N
S AXi=0 |
i=1

Vi=1,---,N, ©)

Here, p; represents the dual variable of the sub-constraint
F;, where its dimension is given by,

HEZ Ul by — 1), i

while A € ROV-DI=I| denotes the Lagrange multiplier
corresponding to the coupling constraints. The coupling
constraint matrix A; is structurally defined as follows,

—6 6 I\zlfl . . .
Ay =0 0 0| Ay= () 0(}\7) (, )
. . *I\z“N\ O(N) 0
~ -—I|z@\ 0 0 )
A= 0 0 I|Zz;‘ ,Vie{2,---N —1},

T T
Ai:[O|Xi\><(i—2)\zll’|a A, O\Xi\x(rfﬂzi’\)] ;

B — - S o)
where, matrix 0 = 0z, .t OXf O‘Zlf‘x‘m(l)‘)} 0 =
Olztl)lxli(N)‘;NSU.Ch thatbAl € RTXI ll, Al S RTXl "l, AN €
RIXNI A e R2A7IXIXi | Note that N | A; X, = 0
contains 2? = z¢ |, fori=1,--- ,N — 1.

b=
IV. DISTRIBUTED OPTIMIZATION ALGORITHMS

This section is dedicated to developing efficient solutions
within the ALADIN framework to address the time-splitting
reformulation of MHE (9). Initially, we propose an efficient
approach for solving coupled QP, which is integrated into
the ALADIN framework. Subsequently, based on the afore-
mentioned efficient approach, three ALADIN variants are
proposed to reduce the computational burden of the standard
ALADIN [20]. In this section, (-) denotes the value after
the update, whereas (-)~ represents the value before the
update.

A. An Efficient Method for Solving Coupled QP

Before introducing our algorithm for solving problem (9),
we first introduce an efficient method for solving the strongly
convex QP (10) below with coupling constraints:

min
{AX;}

st. CiAX; =0 |pei,
N
> AXS +AX) =0

i=1

N
Z %AXZ‘THiAXi +9i AX;
i=1

Yi=1,---,N, (10)

Theorem 1 (Efficient QP) Let the locally linear indepen-
dence constraint qualification (LICQ) be satisfied for prob-
lem (10), ensuring the linear independence of Cis and A;s
for every i = 1,2,---  N. Let the locally second-order
sufficient condition (SOSC) [8] be satisfied, i.e., H; > 0, Vi.
Also, let us assume the existence of a unique global optimal



solution for problem (10). Solving problem (10) is equivalent
to evaluating the values of N\, p; and AX; as follows,

N -1
A= <Z Gi— @RJQI) 2
i=1

== R (CH g+ QIA), (an

AX; =— H ' (gi + O +AIA) :
where,
N
Gi=AHT'AT, | ¢=)_ (QiR7'Ci— Ai) H; 'gi,
Qi=AH;'C/, i (12)
Ri=CH'Ci, | p=>_AiX] +q.
=1

Proof. See Appendix L. |
As an extension of Theorem 1, we propose the closed-
form solution

N -1 N
A= (Z GiQiRilQiT) <pZQiRﬁDi> :

P :_:;1 (Cin‘ilgi +QIA- Di) ) (13)

AX;=—H; ! (gi 1O i+ AI,\) .

of the following problem,

min
{AX;}

N
in > CAXHAX +g] AX,
i=1

st. Di+CiAX; =0 i, Vi=1,---,N, (14)
N
D TAXS +AX) =0,
=1
where D; € Rl#l are given constant matrices. Note that,
equations (11) and (13) will be integrated into our proposed
algorithms. Due to space limitations, details are omitted here.

B. Algorithm Development

Based on [22], Section I'V-B.1 introduces an efficient vari-
ant of Gauss-Newton ALADIN. Section IV-B.2 presents an
inexact update version of ALADIN, inspired by [23]. Finally,
Section IV-B.3 explores an ALADIN variant in which sub-
problems are not locally optimized (drawing inspiration from
[24]).

1) Efficient Gauss-Newton ALADIN: The objective
function J;(X;) in (9) is formulated as a nonlinear least-
squares optimization problem, where the full vector-valued
measurement function #H;(X;) is introduced:

ps (21 = &1-L);4
(h(z5) = vi)jez, | (15)
(h(@1) = yi);—y
where, Z; = {l—L+(i—1)t,-- ,I— L+it—1}. Consequently,
the objective function J;(X;) of the sub-problems can be
expressed as J;(X;) = 1|1 (X;) |2

Efficient Gauss-Newton ALADIN is presented in Algo-
rithm 1. Similar to Gauss-Newton ALADIN [22], it alternates
between solving sub-problems in parallel at the sub-nodes
and coordinating via the coupled QP (10). Further, Algorithm

Hi(X;) =

ol NI

-
-
1)t,

Algorithm 1 Efficient Gauss-Newton ALADIN
Initialization: Initial guess of dual variable A and primal variables
{Yi}, Vi, choose p > 0.
Output: Optimal solution {Y;*}.
Repeat:

1) Paralleled solve local NLP:

1 _
X = arg mino | H: (X0) P42 T A Xi+ 2 | XY,
X, 2 2 (16)

2) Evaluate local variables and sensitivity matrix from X;':
by =Ha(X[),
B =VH,(X;) ", (17)
C; =VF(X;).
3) Assemble gradient and Hessian:
gi = Bibi, H; = B;B; . (18)
4) Update and broadcast the global dual variable A\:

N -1
A= (Z Gi— QiR;lQiT) p: (19)

i=1

5) Paralleled update local primal and dual variables:

pi =— Ry NCiH g + Q) N),
)

(20)
=X;"— H; '(gi + Cf i + A N).

1 replaces the coupled QP with (11), thereby accelerating
computation. During each iteration, Step 1) solves the NLP
sub-problems (16) in parallel using any NLP solver. In Step
2), each sub-node performs sensitivity analysis based on its
local solution, computing the gradient g; and H; at each
local node according to the optimal solution X j , see (17).
These results are then transmitted to the central node. After
gathering the sensitivity data from all sub-nodes, the central
node updates the global dual variable A in Step 4) using
equation (19). The updated A is subsequently broadcast to
the sub-nodes, allowing each sub-node to locally update the
primal variables according to equation (20). This process is
repeated until convergence.

Note that Algorithm 1 is specifically tailored for least-
squares problems. To extend its applicability and further re-
duce overall computational time, we propose two additional
ALADIN variants designed for broader problem classes.

2) Efficient Sensitivity Assisted ALADIN: Inspired by
[23], we propose Efficient Sensitivity Assisted ALADIN (Al-
gorithm 2) by leveraging the sensitivity of NLP parameters.

The augmented Lagrangian function for each sub-problem
of problem (9) is expressed as

»CiZJi(Xi)-l-)\TAi(Xi—Yi)—i-g||Xi—YiH2+Mz‘T]:i(Xi)- 2n

Following the notation in [23, IV.C], we define s;(§;) =
(Xi(&) T, us(&)T) T for notational convenience, where &; =
(Y;T,AT)T. The Karush-Kuhn-Tucker (KKT) conditions for
the constrained sub-problems can be further expressed as,

el = [VEGS D) <0 e



where higher-order terms in the linearization of the solution
manifold are neglected, the update for the sub-problems of
Algorithm 2 is as follows,

sT(&) =si(&) - MW (6 —-&),

where M; = %‘f; LN, = ?fi

(23)

i

Utilizing a tangent predictor, the approximate solutions of
the sub-problems at subsequent iterations can be efficiently
estimated. Unlike the linearized ALADIN method [18, Equa-
tion (12), Appendix A], which linearizes the objective func-
tion around the current iteration point, this approach instead
focuses on linearizing the solution manifold in the vicinity
of the parameters.

Algorithm 2 Efficient Sensitivity Assisted ALADIN
Initialization: Initial guess of dual variable A, p;, primal
variables {Y; = X;}, Vi and parameter & = ((V;)T,AT)T,
choose p > 0.

Output: Optimal solution {Y;*}.

Repeat:
1) Evaluate gradient, Hessian and sensitivity matrix from
X
9i =V Ji(Xa),
Hy =V°(Ji(X3) + pi Fo(Xa)) + pl, (24)
C; =VFi(X,),
D, =F(X5).

2) Update and the global dual variable A as
N -1 N
A= <Z Gi—QiR;'Qf > (p—z QiR;lDi> . (23
i=1 i=1
3) Paralleled update ;s and Yl-*s as
{ fu=— R (CH g+ QTN = Di)

Y =X, - H! (gi +C i+ A:A) ' -

4) Collect parameter & = ((V;)T, )\T)T, compute
M, N in parallel, and then solve local NLP with (23)
2

5) Extract X" from s;: s = (X)), 1)) 7.

i

In Algorithm 2, inspired by (13), the central node updates
the global dual variable according to equation (25), incorpo-
rating local information from equation (24). Each node then
concurrently updates its local dual variable fi; and primal
variable Y;" via equation (26). Next, each node updates s;"
using (23). This process iterates until convergence.

3) Efficient Distributed SQP: Building on the approach
proposed in Decentralized SQP [24], we propose Efficient
Distributed SQP (Algorithm 3). Unlike Algorithm 1 and 2,
Algorithm 3 solves problem (9) by bypassing the resolution
of sub-problems. Moreover, instead of solving the coupled
QP (14) via an inner-level ADMM [24], Algorithm 3 updates

2The update of local primal variables can optionally consist of two phases
[23, Algorithm 1]: update using (23) when the KKT condition is almost
satisfied; otherwise, update using (16).

the global dual variable A, the local variables p; and AX;
according to the closed-form given by (13).

Algorithm 3 Efficient Distributed SQP

Initialization: Initial guess of dual variable A and primal
variables {Y;}, Vi, choose p > 0.

Output: Optimal solution {Y;*}.

Repeat:
1) Locally update gradient, Hessian and sensitivity matrix
from Y;™:
9: =VJi(Y;"),
Hy »V2 (LY ) + pid Fo(Yi)) + oI, o7
Ci =VF(Y;"),
Dy =Fi(¥;):
2) Update and the global dual as equation (25).
3) Update y;s and Y;Ts as
pi =— RN (CiH[  gi + Q) A — Dy), 28)
Y=Y = Hi N gi + O+ AT N).

C. Convergence Analysis

We now examine the variations and convergence properties
of the algorithms presented. Specifically, compared to Gauss-
Newton ALADIN in [22], Algorithm 1 incorporates the
closed-form expression given in (10) (as detailed in equations
(19) and (20)). A comprehensive convergence analysis for
Gauss-Newton ALADIN is provided in [22, Theorem 1].
Algorithm 2 features a local update step inspired from
the Sensitivity-Assisted ADMM [29]. The corresponding
convergence analysis will be included in the extended version
of this work. The convergence analysis for Algorithm 3
is derived from [24, Theorem 1], and thus, is omitted for
brevity.

V. NUMERICAL EXPERIMENT

In this section, we apply the three proposed algorithms
to a practical MHE problem, known as the differential
drive robots problem (see [1]). As demonstrated in [5], the
MPC problem locally satisfies the conditions of Theorem 1.
Given that the MHE problem is shown to be the dual of
the MPC problem in [30, Section 2.2], it follows that the
practical MHE problem also locally satisfies Theorem 1.
The following MHE problem involves three state variables,
r = (¢,v,0)T, which represent the lateral position &,
longitudinal position ), and orientation angle 6. Additionally,
two control inputs, v = (v,w)', are considered, where
v denotes the linear velocity and w the angular velocity.
The observation vector y = (r, )" consists of the relative
range  and bearing «. Given x, u,y and a sampling time of
T = 0.2s, the dynamics of the MHE system and the observer
model are formulated as follows, in contrast to equation (1):

¢n Vp, COS Oy, /2 +1)2
f(lnvun): Yn [T | vn sin b 7yn_|:r:|_ i f: |:VT:|a
0, wn a arctan ( g n) Vo




where v, and v,, denote Gaussian noise, with v, ~ N(0, 02)
and v, ~ N(0,02).

The code implementation in this paper is based on [1].
The experimental setup adopts a prediction horizon L = 25,
and the initial states xo = (0.1,0.1,0.0)T define the initial
position and orientation of the robot. In the implementation,
the state trajectories x* = (¢*,1*,0*)T are generated via
MPC under the same control model as [1]. Notably, the pri-
mal variables are initialized to (¢*,1*,0)". In the numerical
implementation of Algorithms 1, the penalty parameter is set
to p = 25, while for Algorithm 2 and 3, p = 103. The dual
variables A\ and g are initialized to zero. All simulations
were conducted using Casadi-3.6.6 [31] with ITPOPT
in MATLAB R2024a on a Windows 11 system, equipped
with a 2.1 GHz AMD Ryzen 5 4600U processor and 16GB
of RAM.

Figure 2 compares the state trajectories obtained from
centralized and distributed solvers for the MHE problem with
N = 4. The results indicate that the proposed distributed
MHE framework generates estimates nearly identical to those
of the centralized baseline.

—
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Fig. 2: Comparison of state estimation trajectories: central-
ized solver (CasADi) vs. Efficient Distributed SQP.

Figure 3 illustrates the convergence behavior of Algorithm
1-3 with N = 4, all exhibiting linear convergence. Notably,
all three algorithms achieve an accuracy of 108 within 30
iterations, highlighting their computational efficiency. In par-
ticular, Algorithm 2 leverages CasAD1 to compute the exact
solution in its first iteration, following the recommendations
in [23, Algorithm 1].

Table 1 summarizes the total CPU time of the three pro-
posed efficient ALADIN variants as a function of the number
of sub-windows N. Notably, existing time-splitting-based
MPC studies lack theoretical analysis on the relationship
between the number of sub-windows N and computational
time. By leveraging equations (11) and (13), we establish that
the optimal number of sub-windows follows the asymptotic
relation N* =~ \/Z, where L denotes the total horizon

——— Efficient Gauss-Newton ALADIN
Efficient Sensitivity Assisted ALADIN | {
= = Efficient Distributed SQP

i Y =¥ e
-

5]
&

pnd

10708 \-\/

10712
0

Fig. 3: Convergence comparison among Algorithms 1-3.

N Algorithm 1 Algorithm 2 | Algorithm 3 QP-CasADi
3 2.83 8.51 0.0183 1.60
4 2.84 8.76 0.0184 1.71
5 2.04 8.08 0.0155 1.57
6 3.05 11.82 0.0186 1.66

Table. 1: Total CPU time [s] for different algorithms over N
sub-windows (measured as the time for 50 iterations of each
algorithm).

length. For brevity, the detailed derivation will be provided
in an extended version of this work. In our experiment,
setting L = 25 yields an optimal sub-window count of
N* = 5. For comparison, we introduce QP-CasADi, which
replaces Steps 2) and 3) of Algorithm 3 with CasADi-
based QP solvers. The results demonstrate that across all
four algorithmic structures, the configuration with N = 5
consistently achieves the lowest computational time. The
centralized problem (4) was solved in approximately 0.0516
seconds using CasADi. Notably, although Algorithm 2
requires a longer total CPU time than Algorithm 1, its
sub-problems solutions does not rely on existing solvers,
making it particularly suitable for scenarios with limited
computational resources at sub-nodes. As we know, [9] has
already integrated the ALADIN algorithm into the ACADO
Toolkit for experimental comparisons in the context of MPC
problems. The present study could potentially be extended
to conduct similar experiments.

VI. CONCLUSION

This paper introduces three computationally efficient dis-
tributed optimization algorithms for nonlinear MHE prob-
lems, considering sub-problem solver capabilities. We pro-
pose a distributed MHE reformulation using a time-splitting
strategy and develop new solutions within the ALADIN
algorithmic family. By utilizing a closed-form solution for
large-scale coupled QP, these algorithms significantly reduce
computational time, enabling real-time applications. Numer-
ical experiments on an MHE problem with differential drive
robots demonstrate superior convergence and efficiency. Fu-
ture work will focus on enhancing ALADIN by accelerating
matrix updates in Algorithm 2 and adaptively prioritizing
critical sub-problems, as well as exploring the algorithms’



applicability to larger-scale systems.

APPENDIX I
PROOF OF THEOREM 1

The augmented Lagrangian function for problem (10) is
defined as: N

i=1
N N (29)
D CAX + AT A(X] + AX).
=1 =1

From (29), the KKT system of problem (10) is given by:
% = HibXi+gi + Gl i + AT A =0,

AKX,
g—fi = C;AX; =0, (30)
9 SN A(BX 4 XP) =0,
From the first condition % = 0 in equation (30), the
following expression is derived:
AX; = —H; (g + Ci pi + Al ). (31)

When equation (31) is substituted into the second equation
of (30), the resulting equation is expressed as:

pi =—R;N(CiH g + Q) ). (32)

Next, by substituting (32) into (31) and the third equation of
(30), the following result is derived:

N N
Y GA=p+Y QRQIN
i=1 i=1

Through further simplification, the solution for A is obtained
as equation (19). Subsequently, the local dual variable p; is
computed by equation (32) using the previously computed
A. Finally, the local primal variable increment AX; is
calculated using equation (31) based on the obtained p; and
A. Consequently, problem (10) has been successfully solved.
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