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Abstract— In this paper, we investigate the problem of
decentralized consensus optimization over directed graphs with
limited communication bandwidth. We introduce a novel de-
centralized optimization algorithm that combines the Reduced
Consensus Augmented Lagrangian Alternating Direction Inex-
act Newton (RC-ALADIN) method with a finite time quan-
tized coordination protocol, enabling quantized information
exchange among nodes. Assuming the nodes’ local objective
functions are µ-strongly convex and simply smooth, we establish
global convergence at a linear rate to a neighborhood of the
optimal solution, with the neighborhood size determined by
the quantization level. Additionally, we show that the same
convergence result also holds for the case where the local objec-
tive functions are convex and L-smooth. Numerical experiments
demonstrate that our proposed algorithm compares favorably
against algorithms in the current literature while exhibiting
communication efficient operation.

I. INTRODUCTION

Decentralized optimization has garnered significant atten-
tion in recent years, driven by advances in areas such as
control systems [1], machine learning [2], and power grids
[3]. This growing interest is largely due to the increasing
need to address optimization problems that involve vast
amounts of data and heterogeneous objective functions.

Decentralized optimization distributes data across multiple
network nodes, typically using two main approaches: (i)
primal decomposition and (ii) dual decomposition. Both
methods locally optimize the objective functions. Primal
decomposition methods focus on sharing primal information
among nodes, such as local optimal solutions or first- and
second-order objective function data (e.g., [4], [5]). In con-
trast, dual decomposition methods update both the primal
and the dual variables associated with coupling constraints
(e.g., [6], [7]). In general, dual decomposition methods
achieve faster convergence and higher accuracy than primal
decomposition approaches [8, Section I]. In this paper we
focus on dual decomposition methods.
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Existing Literature. Dual decomposition-based optimiza-
tion methods are built upon several core frameworks: Dual
Decomposition [9], the Alternating Direction Method of
Multipliers (ADMM) [6], and the Augmented Lagrangian
Alternating Direction Inexact Newton (ALADIN) method
[7]. While ADMM has undergone significant develop-
ments in both convergence theory and practical applica-
tions [6], [10], [11], ALADIN improves convergence per-
formance—achieving faster rates and ensuring convergence
for both convex and nonconvex problems—by incorporating
sequential quadratic programming techniques [7], [12]. Sub-
sequent developments have introduced specialized variants of
ALADIN designed to tackle diverse computational complex-
ity challenges [1], [12]–[15]. However, two key limitations
of these approaches are (i) their reliance on centralized coor-
dination mechanisms (which limits scalability in distributed
systems), and (ii) the requirement of nodes transmitting real-
valued messages requiring a significant amount of band-
width (which creates a scalability bottleneck). To address
the first challenge, the works [8], [16], [17] investigated its
decentralization for both resource allocation and consensus
problems. Furthermore, recent works [1], [18] have extended
ALADIN to decentralized settings, however focusing only
on resource allocation problems. Note that, despite some
existing studies on variants of consensus ALADIN, such as
[12], [19], a decentralized version of this framework has yet
to be explored and addressed in the literature. Meanwhile, to
address the second challenge of inefficient communication
due to transmission of real-valued messages, the works in
[20], [21] investigated decentralized Consensus ADMM with
quantized communication on undirected graphs. Although
the aforementioned works have advanced ADMM devel-
opment, they have only addressed some of the identified
bottlenecks. The aforementioned literature has certain limi-
tations, such as assuming a centralized coordinator, requiring
nodes to exchange real-valued messages, or being restricted
to undirected graphs. To the best of our knowledge, [22] is
the only study to explore decentralized Consensus ADMM
on directed graphs while enabling nodes to communicate
in a resource efficient manner by exchanging quantized
valued messages. Note that, although Consensus ALADIN
exhibits superior convergence performance compared to Con-
sensus ADMM [12], its decentralized variant which however
exhibits efficient communication with quantized value on
directed graphs remains a problem that is unexplored in the
literature.
Main Contributions. Motivated by the aforementioned chal-
lenges, we introduce a novel decentralized optimization



algorithm leveraging Consensus ALADIN to tackle these
issues. Note that to the authors knowledge, it is the first
that Consensus ALADIN to address (i) fully decentral-
ized algorithm operation, (ii) communication over directed
graphs, and (iii) quantized communication among nodes.
Inspired by [22] and [23], we note that adopting a two-
layer algorithmic structure—where the optimization steps are
decoupled from the decentralized averaging procedure—can
achieve faster convergence compared to approaches that
interleave optimization and communication in a single layer.
Our contributions are the following.
A. We present a novel two-layer decentralized optimiza-
tion algorithm, termed Quantized Decentralized Reduced
Consensus ALADIN (QuDRC-ALADIN) (see Algorithm 1),
designed to operate over directed communication graphs.
The inner layer (Algorithm 2, inspired by [22]) enables
efficient communication among nodes via the exchange of
quantized messages. The outer layer (i.e., the remaining steps
of Algorithm 1) is responsible for updating the primal and
dual variables of the original optimization problem.
B. We prove that our algorithm converges to a neighborhood
of the optimal solution (where the neighborhood depends on
the quantization level) with global linear convergence rate
for the case where the local cost function of each node
is µ-strongly convex, closed, proper, and simply smooth
(see Theorem 1). Additionally, we show that our algorithm
exhibits global linear convergence rate also for the case
where the local cost function of each node is convex, closed,
proper, and L-smooth (see Corollary 1).

II. NOTATION AND PRELIMINARIES

Notation. We use the symbols R, Q, Z, and N to represent
the sets of real, rational, integer, and natural numbers,
respectively. Matrices are indicated by capital letters (e.g.,
A), and vectors are represented by lowercase letters (e.g., a).
The transpose of matrix A ∈ Rn×n and vector a ∈ Rn are
represented as A⊤ and a⊤, respectively. For a real number
a ∈ R, ⌊a⌋ and ⌈a⌉ denote the greatest integer less than
or equal to a and the least integer greater than or equal to
a, respectively. For the real vector a ∈ Rn, ⌊a⌋ ∈ Rn and
⌈a⌉ ∈ Rn denote the element-wise operation. Furthermore,
1 represents the vector of all ones and I denotes the identity
matrix with appropriate dimensions. In addition, ∥a∥ denotes
the Euclidean norm of the vector a. The value of a variable x
of node i at iteration k is denoted as x[k]

i . The updated value
is denoted as (·)+. Furthermore, |S| denotes the cardinality
of a countable set S (e.g. |V| = N as we can see below).
The notation a|b denotes b ∈ Rn as the dual variable of
constraint a ∈ Rn.

Graph Theory. The communication network is captured
by a directed graph (or digraph) G = (V, E). The set of
agents (nodes) is denoted as V = {1, · · · , N} (where |V| ≥
2). The set of edges is denoted as E ⊆ V×V∪{(i, i) | i ∈ V}
(each node has a virtual self-edge). A directed edge from
node i to node j is denoted by eji

·
= (j, i) ∈ E . The subset

of nodes that can directly transmit information to node i is
called the set of in-neighbors of i and is denoted N−

i = {j ∈

V | (i, j) ∈ E}. The subset of nodes that can directly receive
information from node i is called the set of out-neighbors of
i and is denoted N+

i = {l ∈ V | (l, i) ∈ E}. The cardinality
of N−

i represented as D−
i = |N−

i |, is called in-degree of
node i. The cardinality of N+

i represented as D+
i = |N+

i |,
is called out-degree of node i. The diameter D of digraph G
is the longest shortest path between i, j ∈ V . A digraph G is
strongly connected if there exists a directed path from every
node i to node j that i, j ∈ V .

Quantization. In digital communication networks, quanti-
zation serves to reduce bandwidth requirements and improve
communication efficiency. By using a finite number of bits,
quantization enables the application of error-correcting codes
(e.g., Reed-Solomon, LDPC) to significantly enhance the
signal’s resilience to interference during transmission [24].
Three primary types of quantizers have been extensively
studied: asymmetric, uniform, and logarithmic (see [25]). In
this paper we utilize asymmetric mid-rise quantizers with an
infinite range (although our findings also hold for other types
of quantizers as well). An asymmetric mid-rise quantizer is
defined as

qa∆(b) =

⌊
b

∆

⌋
, (1)

where b ∈ Rn is the value to be quantized, and ∆ ∈ Q
denotes the quantization level, and the superscript a denotes
the asymmetric type.

III. PROBLEM FORMULATION

Consider a communication network represented by a di-
graph G = (V, E) comprising N = |V| nodes. We assume
that the communication channels between nodes in our
network G have limited bandwidth. Each node i is associated
with a scalar local cost function fi(x) : Rn 7→ R, known
exclusively to that node. Our objective in this paper is
to develop a decentralized algorithm that enables nodes to
collaboratively solve the following optimization problem

min
z∈Rn

N∑
i=1

fi(z), i ∈ {1, · · · , N}, (2)

where z is the global optimization variable. In order to solve
problem (2) we introduce a local variable xi for each node
i ∈ V (following the approach outlined in [6, Chapter 7.1]).
Thus, (2) is reformulated as

min
xi, i=1,...,N

N∑
i=1

fi(xi)

s.t. xi = z, ∀i ∈ {1, · · · , N}, xi, z ∈ Rn.

(3)

Problem (3) is known as the consensus optimization problem,
as the constraint enforces equality among all local variables.
In order to solve (3) via the RC-ALADIN strategy (see [12])
while guaranteeing efficient communication among nodes,



we have that (3) is reformulated as

min
xi, i=1,...,N

N∑
i=1

fi(xi)

s.t. xi = z, ∀i ∈ {1, · · · , N}, xi, z ∈ Rn,

nodes communicate with quantized values.
(4)

The primary contribution of this paper is the development
of a decentralized algorithm that enables nodes to solve the
problem in (4). In our paper, a decentralized approach refers
to a distributed approach without the presence of a central
coordinator. More specifically, in our proposed decentralized
algorithm nodes coordinate solely through communication
with their immediate neighbors (i.e., without the presence of
a central coordinator).

IV. PRELIMINARIES OF RC-ALADIN

The augmented Lagrangian of Problem (4) is given by

L (x, z, λ) =

N∑
i=1

fi(xi) + λ⊤
i (xi − z) + ρ ∥xi − z∥2 , (5)

where, ρ > 0 is a penalty parameter, λ = [λ⊤
1 , · · · , λ⊤

N ]⊤

denotes the dual variables and x = [x⊤
1 , · · · , x⊤

N ]⊤ collects
the local primal variables. Focusing on (5), RC-ALADIN
was proposed in [12] to solve the consensus optimization
problem in (3). Details of RC-ALADIN are the following,

x+
i =argmin

xi

fi(xi) + λ⊤
i xi +

ρ

2
∥xi − z∥2, ∀i ∈ V, (6a)

gi =ρ
(
z − x+

i

)
− λi, ∀i ∈ V, (6b)

z+ =
1

N

N∑
i=1

(
x+
i − gi

ρ

)
, (6c)

λ+
i =ρ

(
x+
i − z+

)
− gi, ∀i ∈ V. (6d)

In equation (6a), we minimize the augmented Lagrangian
with respect to each xi. In equation (6b), we evaluate the
(sub)gradient of each fi at x+

i . Note that (6b) always exists
as long as (6a) is solvable. Equations (6c) and (6d) are the
closed form expression of the following centralized reduced
consensus QP problem

min
∆xi∈Rn, i=1,...,N

N∑
i=1

ρ

2
∆x⊤

i ∆xi + g⊤i ∆xi

s.t. x+
i +∆xi = z|λi, ∀i ∈ {1, · · · , N}.

(7)

The reduced consensus QP in (7) is used from nodes to
coordinate without depending on second-order information
of their local cost functions fi, ∀i ∈ V . Our previous work,
RC-ALADIN in (6), provides global convergence guarantees
for (3) when the local functions of each node are convex.
Additionally, it offers globally linear convergence guarantees
for (3) when the local functions of each node are µ-strongly
convex (see [26, Theorem 2, Theorem 7]).

Note that, RC-ALADIN in (6) is implemented by nodes
in a distributed manner, but also considers the presence of

a centralized coordinator that can exchange messages with
every node in the network. More specifically, focusing on
(6a) – (6d), the updates (6a), (6b), (6d) are performed locally
from each node i, and the update (6c) is performed in a
centralized fashion from the centralized coordinator. Moti-
vated by this limitation, in the next section we will present
a fully decentralized algorithm. Our proposed algorithm
enables nodes to (i) collaboratively solve problem (4) by
communicating exclusively with their immediate neighbors
(eliminating the need for a central coordinator), and (ii)
exhibit efficient communication within the network.

V. DECENTRALIZED RC-ALADIN WITH EFFICIENT
COMMUNICATION

In this section, we introduce a novel decentralized al-
gorithm designed to address the problem in (4). Before
introducing the proposed decentralized algorithm, we first
make the following assumptions that are important for our
subsequent development.

Assumption 1. The communication network is modeled as
a strongly connected digraph G = (V, E). Also, every node
i knows the diameter of the network D, and a common
quantization level ∆.

Assumption 2. The local cost function fi of each node
i ∈ V is closed, proper, simply smooth and µ-strongly
convex. Specifically, for each local cost function fi, for every
xα, xβ ∈ Rn, there exist a strong-convexity constant µi > 0
such that

fi(xα)+∇fi(xα)
⊤(xβ − xα) +

µi

2
∥xβ − xα∥2 ≤ fi(xβ).

(8)

Here, simply smooth refers to a smooth function fi where
Li cannot be explicitly estimated as in inequality (9) in
Assumption 3 below. In contrast, L-smooth indicates that
fi is smooth with an explicitly estimable Li as shown in (9)
below.

Assumption 3. The local cost function fi of each node i ∈
V is closed, proper, L-smooth and convex. Specifically, for
each local cost function fi, for every xα, xβ ∈ Rn, there
exist a Lipschitz-continuity constant Li > 0 (see [8, equation
(51)]) such that

∥∇fi(xα)−∇fi(xβ)∥2

≤ Li (∇fi(xα)−∇fi(xβ))
⊤
(xα − xβ) .

(9)

In Assumption 1, strong connectivity ensures that infor-
mation can propagate between all nodes in the network and
guarantees the convergence of Algorithm 2 (since strongly
connected digraph implies there is a path from every node
to every other node in the network). Knowing the diameter
of the network is useful for each node to determine whether
Algorithm 2 has converged, allowing it to proceed to step 3
of Algorithm 1. Note here that the network diameter can can
be computed by employing distributed algorithms [27]. For
open undirected networks, the network diameter D need not
be known a priori [28]. The quantization level is important



for quantizing the messages as described in (2) (thus ensuring
efficient communication during the execution of Algorithm
2). Nodes can compute a common quantization level ∆ in
finite time via a max-consensus operation. Assumption 2
ensures strong convexity and simple smoothness, allowing us
to establish a global linear convergence rate for Algorithm 1
while ensuring that the global cost function in (4) has a
unique minimum [29, Theorem 13.27], [8]. Assumption 3
guarantees that the Lipschitz continuity of gradients in (9)
ensures the existence of a global optimal solution x∗ for
(4) and enables nodes to compute it, which is a standard
requirement in first-order distributed optimization frame-
works (see, e.g., [29]). Many practical optimization problems
satisfy Assumptions 2 and 3 [30], [31]. However, when
these two assumptions are violated in specific applications,
the proposed Algorithm 1 admits only global convergence,
without a guaranteed convergence rate [12], [26].

A. Algorithm Development

In this section, we present our proposed decentralized
algorithm, detailed below as Algorithm 1.

Algorithm 1 QuDRC-ALADIN: Quantized Decentralized
Reduced Consensus ALADIN
Input. Strongly connected digraph G = (V, E), parameter ρ,
network diameter D, quantization level ∆, for each node
i ∈ V . Each node i ∈ V has a local cost function fi.
Assumptions 1 and 2 hold.
Initialization. Randomly chosen dual variable λ̂i ∈ Rn, and
global variable estimation ẑi ∈ Rn, for each node i ∈ V .
Iteration. Each node i ∈ V repeats:

1) Optimize xi as

x+
i = argmin

xi

fi(xi) + λ̂⊤
i xi +

ρ

2
∥xi − ẑi∥2. (10)

2) Evaluate the gradient gi of fi as

gi = ρ
(
ẑi − x+

i

)
− λ̂i. (11)

3) Calculate the global variable estimation as

ẑ+i = Algorithm 2
(
x+
i − gi

ρ
,D,∆

)
. (12)

4) Update the dual variable λ̂i as

λ̂+
i = ρ

(
x+
i − ẑ+i

)
− gi. (13)

Output. Each node i calculates x∗
i that solves problem (4).

The intuition of Algorithm 1 is organized into two main
phases: local optimization and coordination among nodes. In
the first step, each node i ∈ V performs a local optimization
to determine the optimal value of its variable xi by solving
its corresponding augmented objective function, (see (10)).
Following this, in the second step each node i evaluates the
(sub)gradient of its local function fi at the locally optimized
solution x+

i . This (sub)gradient evaluation serves as prepara-
tion for the aggregation process in the subsequent step (see
(11)). In the third step, all nodes collaborate to update their

estimates of the global variable ẑ+i through the quantized,
decentralized operation of Algorithm 2 (see (12)). Finally, in
the fourth step each node updates its dual variable λ̂+

i which
encodes sensitivity information related to the constraints of
problem (4). The updated dual variables are then utilized
in the next iteration’s local optimization phase (see (13)).
Overall, Algorithm 1 alternates between performing local
optimization (step 1) and solving problem (7), iterating until
convergence is achieved and the optimal solution is obtained.

Algorithm 2 FQAC: Finite-time Quantized Average Consen-
sus
Input. yi = x+

i − gi
ρ , D,∆.

Initialization. Each node i ∈ V :

1) Assigns probability

pli =


1

1 +D+
i

, if l ∈ N+
i ∪ {i},

0, if l /∈ N+
i ∪ {i},

(14)

to each out-neighbor of node i.
2) Sets ξi = 2, χi = 2qa∆(yi) (see (1)).

Iteration. For time steps t = 1, 2, · · · each node i ∈ V does:

1) If t mod(D) = 1, sets Mi =
⌈
χi

ξi

⌉
and mi =

⌊
χi

ξi

⌋
.

2) Broadcasts Mi,mi to each out-neighbor l ∈ N+
i and

receives Mj ,mj from each in-neighbor j ∈ N−
i . Then,

sets Mi = maxj∈N−
i ∪{i} Mj , mi = minj∈N−

i ∪{i} mj .

3) Sets τi = ξi.

4) While τi > 1 do
a) ci =

⌊
χi

ξi

⌋
.

b) Sets χi = χi − ci, ξi = ξi − 1, τi = τ − 1.
c) Transmits ci to randomly chosen out-neighbor l ∈

N+
i ∪ {i} with probability pli.

d) Receives ci from j ∈ N−
i and updates

χ
[t+1]
i = χ

[t]
i +

∑
j∈N−

i

w
[t]
ij c

[t]
j , (15a)

ξ
[t+1]
i = ξ

[t]
i +

∑
j∈N−

i

w
[t]
ij . (15b)

Here w
[t]
ij = 1 if node i receives c

[t]
j from node j

at step t. Otherwise w
[t]
ij = 0 and node i does not

receive information from node j.
5) if t mod (D) = 0 and ∥Mi −mi∥∞ ≤ 1, set ẑ+i =

mi∆, and stop the operation of the algorithm.
Output. ẑ+i .

Algorithm 2 follows a structure similar to [32, Algo-
rithm 1], and consists of three main operations: quantization,
averaging, and a stopping criterion. During initialization each
node i quantizes its local information yi = x+

i − gi
ρ into

a quantized value χi. Then, it splits χi into ξi pieces (the
value of some pieces might be greater than others by one).
It retains the piece with the smallest value to itself and



transmits the rest ξi − 1 pieces to randomly chosen out-
neighbors l ∈ N+

i or to itself. Then, it receives the pieces cj
transmitted from each in-neighbor j ∈ N−

i and updates χi

and ξi as in (15). The algorithm also performs max- and min-
consensus operations every D time steps. If the results of the
max-consensus Mi and min-consensus mi have a difference
less or equal to one, then each node i scales its solution
according to the quantization level to compute ẑ+i . At this
point, Algorithm 2 terminates, and each node i transitions to
step 4 of Algorithm 1. Note that Algorithm 2 is guaranteed to
converge in finite time, ensuring ∥Mi −mi∥∞ ≤ 1 (see Step
5). The convergence time depends on the network diameter
D, as established in [33, Theorem 1].

Comparison with Previous Works. Note that the key contri-
bution of this work is the development of a communication-
efficient fully decentralized algorithm for solving prob-
lem (4). More specifically, while our previous work RC-
ALADIN in (6) (also see [12]) is distributed and considers
the existence of a server node able to communicate with
every node in the network, our main contribution in this
paper lies in achieving full decentralization (i.e., nodes
coordinate without the presence of a server node). This
is achieved by replacing the centralized update in (6c) by
a decentralized operation through the introduction of local
copies ẑi of z. Moreover, by implementing Algorithm 2,
Algorithm 1 enhances its communication-efficiency while
ensuring convergence precision (see for example [22], [33],
[34]). This characteristic is not present in our previous work
RC-ALADIN in [12] where nodes are operating in a resource
inefficient manner by exchanging real-valued messages that
require a significant amount of bandwidth. Additionally,
in our previous work [22], the convexity (without simple
smoothness) of fi for all i is sufficient for establishing
convergence, demonstrating a global sub-linear convergence
rate. Furthermore, the algorithms in [33], [34] require L-
smoothness and µ-strong convexity to establish the global
linear convergence rate. In contrast, in this paper, either
simple smoothness with µ-strong convexity or L-smoothness
with simple convexity of fi for all i is required to establish
the global linear convergence rate of Algorithm 1. Finally,
note that our previous works [12], [26] require the same
assumptions as this paper (i.e., either simple smoothness with
µ-strong convexity or L-smoothness with simple convexity
of fi for all i). However, as we mentioned above they do
not exhibit communication efficient operation among nodes.
Details of this will be provided in the next subsection.

B. Convergence Analysis

In this section, we provide the convergence analysis of
Algorithm 1. First, we introduce the two lemmas that are
important for our analysis. Then, we prove our main result
via a theorem.

Lemma 1. The update of the global variable estimation ẑi
of each node i ∈ V is given by Algorithm 1 in (12). According
to the constraints of problem (4), the following equation is

satisfied 
ẑ+i =

1

N

N∑
i=1

∆
⌊yi
∆

⌋
+ κi, ∥κi∥∞ ≤ ∆,∥∥z+ − ẑ+i

∥∥
∞ ≤ 2∆,∥∥∥λ̂+

i − λ+
i

∥∥∥
∞

=
∥∥ρ(z+ − ẑ+i )

∥∥
∞ ≤ 2ρ∆,

(16)

where yi = x+
i − gi

ρ .

Proof. See [35, Lemma 1]. ■

Lemma 2. For the distributed consensus optimization prob-
lem presented in (4), Algorithm 1 establishes a relationship
between the local primal update x+

i , the local dual variables
λ̂i and λ̂+

i , and the global primal variable approximations
ẑi and ẑ+i . This relationship is

x+
i =

λ̂+
i − λ̂i

2ρ
+

ẑ+i + ẑi
2

. (17)

Proof. From (13) we have

λ̂+
i = ρ

(
x+
i − ẑ+i

)
− gi

(6b)
= ρ

(
x+
i − ẑ+i

)
−

(
ρ
(
ẑi − x+

i

)
− λi

)
= 2ρx+

i − ρ(ẑ+i + ẑi) + λ̂i.

(18)

equation (17) is then derived from (18). ■
Moreover, from the KKT (Karush-Kuhn-Tucker) system

of problem (7) and (16), the following formulas can be
obtained,

N∑
i=1

λ+
i = 0, and

∥∥∥∥∥
N∑
i=1

λ̂+
i

∥∥∥∥∥
∞

≤ 2ρN∆. (19)

In (19) the first equality arises from the KKT stationarity
condition for the reduced QP problem in (7). The second
inequality arises from substituting the third inequality of (16)
into (13) and then summing over all nodes. For establishing
the global convergence of Algorithm 1, we introduce the
following Lyapunov function,

L(z, λ) = 1

ρ

N∑
i=1

∥λi − λ∗
i ∥

2
+ ρN ∥z − z∗∥2 , (20)

where λ = [λ⊤
1 , λ

⊤
2 , · · · , λ⊤

N ]⊤, and (z∗, λ∗) denotes the
optimal solution pair of problem (4). Following the analysis
in [17], we define the finite positive scalars 0 < Mz < ∞ for
simplifying our later analysis, such that ∥z − z∗∥ ≤ Mz for
every node i ∈ V . Note that the proof of the theorem below
is available in [36]. It will also be available in an extended
version of our paper.

Theorem 1. Let us consider a digraph G = (V, E). Each
node i ∈ V has a local cost function fi, and Assumptions 1
and 2 hold. Each node i ∈ V in the network executes
Algorithm 1 for solving the consensus optimization problem
in (4) in a decentralized fashion. Given parameter ρ > 0,
during the operation of Algorithm 1 there always exists a
δ > 0 such that

δL
(
ẑ+, λ̂+

)
≤ 4

N∑
i=1

µi

∥∥x+
i − z∗

∥∥2 , (21)



where ẑ = ẑi,∀i ∈ V . From (21), we have that during the
operation of Algorithm 1 the following inequality is satisfied

L
(
ẑ+, λ̂+

)
≤ 1

1 + δ
L
(
ẑ, λ̂

)
+

4

1 + δ
O(N∆), (22)

where O(N∆) = 6ρMzN∆, ∆ is the utilized quantization
level, and ∥z − z∗∥ ≤ Mz < ∞.

Remark 1. Focusing on (22) of Theorem 1, the term
4

1+δO(N∆) represents the quantization error introduced
from Algorithm 2. As we will see later in Section VI, this
error causes nodes to converge to a ∆-dependent neighbor-
hood of the optimal solution. While decentralized approaches
to progressively refine ∆ can enhance solution precision
[34], this typically incurs higher communication overhead
in terms of bits per message compromising our algorithm’s
communication efficiency. In contrast, employing quantizers
with base-shifting capabilities [37] allows for maintaining
high communication efficiency while still enabling nodes to
approximate the optimal solution with greater precision. This
latter strategy however, results in a trade-off as it may reduce
the convergence speed of Algorithm 2.

Relaxing Strong Convexity. While Theorem 1 relies on
µ-strong convexity (see Assumption 2), it is important to
note that Algorithm 1 can achieve a symmetric global linear
convergence rate when the local cost function fi of each node
i ∈ V is convex (and not strongly convex) provided it remains
closed, proper, and L-smooth (i.e., satisfies Assumption 3).
We present this in the following corollary. Note that the proof
of the corollary is available in [36] and will also be available
in an extended version of our paper.

Corollary 1. Let us consider a digraph G = (V, E). Each
node i ∈ V has a local cost function fi, and Assumptions 1
and 3 hold. Each node i ∈ V executes Algorithm 1 for solving
the consensus optimization problem in (4) in a decentralized
manner. During the operation of Algorithm 1, there always
exists a δ > 0 such that

δL(ẑ+, λ̂+) ≤ 4

N∑
i=1

1

Li
∥gi − g∗i ∥

2
. (23)

As a result, we have that during the operation of Algorithm 1
the inequality (22) in Theorem 1 is satisfied for every node.

VI. NUMERICAL SIMULATION

In this section, we present numerical simulations to
demonstrate the operation of Algorithm 1 and to highlight the
improvements it offers over existing distributed optimization
algorithms.

We focus on a random digraph consisting of 20 nodes.
Each node i is associated with a function fi(z) =

1
2z

⊤Piz+
p⊤i z where z ∈ Rn, Pi ∈ Sn++, and pi ∈ Rn for each node
i ∈ V , with n = 20. Furthermore, we have ρ = 1 and that
Assumptions 1 and 2 hold. For each node i, Pi ≻ 0 was
initialized as the square of a randomly generated symmetric
matrix Ai, which guarantees that it is positive definite.

Additionally, qi is set as the negative of the product of the
transpose of Ai and a randomly generated vector bi (i.e., it
represents a linear term). For further details, please refer to
[22, Section VI]. We execute Algorithm 1 and show how the
nodes’ decision variables convergence to the optimal solution
for ∆ = 10−3, 10−4, and 10−5, respectively. We plot the
error

∑N
i=1

∥∥∥x[k]
i − x∗

i

∥∥∥ where x∗
i = z∗,∀i ∈ V represents

the optimal solution of problem (4).
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Fig. 1. Comparison of Algorithm 1 with RC-ALADIN [12] over a directed
graph with quantization level ∆ = 10−3, 10−4 and 10−5.

In Fig. 1 we can see that Algorithm 1 converges to
the optimal solution, achieving an approximation precision
that is directly influenced by the quantization level ∆.
Specifically, a smaller ∆ enables nodes to approximate the
optimal solution with greater accuracy, a behavior consistent
with the theoretical results presented in Theorem 1. The
oscillatory behavior observed in the convergence is attributed
to the nonlinearities introduced by quantized communication,
which affect the values of parameters such as xi, gi, and λ̂i.
While Algorithm 1 demonstrates comparable performance
to the approach in [12] up to the neighborhood of the
optimal solution, [12] relies on a distributed framework with
a server node and real-valued message exchanges among
nodes. Thus, the approach in [12] introduces scalability
challenges, suffers from single-point-of-failure risks, limits
its applicability to bandwidth-constrained environments and
compromises resource efficiency. In contrast, Algorithm 1
offers a significant advantages. It provides comparable per-
formance with algorithms in the literature that enable nodes
to exchange real-valued messages (see [12]), while exhibiting
efficient (quantized) communication among nodes (a larger
∆ implies a reduced communication bandwidth requirement
among nodes) thereby reducing data transmission. Moreover,
Algorithm 1 operates in a fully decentralized manner, elim-
inating the need for a server node. A numerical example
in [13, Section 5.1] investigates the role of the penalty
parameter ρ in Algorithm 1, applied to a consistent convex
problem under Assumptions 2 and 3. The example demon-



strates that ρ influences the observed linear convergence rate.
Nevertheless, a comprehensive theoretical characterization of
this dependence for the full class of problems satisfying the
same assumptions remains an open question.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we presented a novel decentralized optimiza-
tion algorithm named QuDRC-ALADIN. Our algorithm en-
ables computation of the optimal solution in a fully decentral-
ized manner over directed communication networks, while
ensuring efficient quantized communication among nodes.
We analyzed our algorithm’s operation and established its
linear convergence to a neighborhood of the optimal solution
that depends on the utilized quantization level. Finally, we
presented numerical simulations validating our algorithm’s
performance, and highlighted its advantages compared to
existing algorithms in the literature.

REFERENCES

[1] G. Stomberg, A. Engelmann, M. Diehl, and T. Faulwasser, “Decen-
tralized real-time iterations for distributed nonlinear model predictive
control,” arXiv preprint arXiv:2401.14898, 2024.

[2] L. Yuan, Z. Wang, L. Sun, P. S. Yu, and C. G. Brinton, “Decentralized
federated learning: A survey and perspective,” IEEE Internet of Things
Journal, vol. 11, no. 21, pp. 34 617–34 638, 2024.

[3] D. Liang, S. Su, L. Zeng, and H.-D. Chiang, “Decentralized method
for nonconvex robust static state estimation of integrated electricity-
gas systems,” CSEE Journal of Power and Energy Systems, pp. 1–13,
2024.

[4] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[5] S. Wang, F. Roosta, P. Xu, and M. W. Mahoney, “GIANT: Globally
improved approximate newton method for distributed optimization,”
in Advances in Neural Information Processing Systems, vol. 31, 2018.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Dis-
tributed optimization and statistical learning via the alternating di-
rection method of multipliers,” Foundations and Trends® in Machine
learning, vol. 3, no. 1, pp. 1–122, 2011.

[7] B. Houska, J. Frasch, and M. Diehl, “An augmented Lagrangian based
algorithm for distributed nonconvex optimization,” SIAM Journal on
Optimization, vol. 26, no. 2, pp. 1101–1127, 2016.

[8] Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “DLM: Decentralized
linearized alternating direction method of multipliers,” IEEE Trans-
actions on Signal Processing, vol. 63, no. 15, pp. 4051–4064, 2015.

[9] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear
programs,” Operations research, vol. 8, no. 1, pp. 101–111, 1960.

[10] B. He and X. Yuan, “On the O(1/n) convergence rate of the douglas–
rachford alternating direction method,” SIAM Journal on Numerical
Analysis, vol. 50, no. 2, pp. 700–709, 2012.

[11] M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of
alternating direction method of multipliers for a family of nonconvex
problems,” SIAM Journal on Optimization, vol. 26, no. 1, pp. 337–364,
2016.

[12] X. Du and J. Wang, “Distributed consensus optimization with consen-
sus ALADIN,” in American Control Conference, 2025 (accepted for
publication).

[13] B. Houska and Y. Jiang, “Distributed optimization and control with
aladin,” Recent Advances in Model Predictive Control: Theory, Algo-
rithms, and Applications, pp. 135–163, 2021.

[14] A. Engelmann, Y. Jiang, T. Mühlpfordt, B. Houska, and T. Faulwasser,
“Toward distributed OPF using ALADIN,” IEEE Transactions on
Power Systems, vol. 34, no. 1, pp. 584–594, 2019.

[15] X. Du, A. Engelmann, Y. Jiang, T. Faulwasser, and B. Houska,
“Distributed state estimation for AC power systems using Gauss-
Newton ALADIN,” in IEEE Conference on Decision and Control,
2019, pp. 1919–1924.

[16] A. Falsone and M. Prandini, “Augmented Lagrangian tracking for
distributed optimization with equality and inequality coupling con-
straints,” Automatica, vol. 157, p. 111269, 2023.

[17] W. Jiang, A. Grammenos, E. Kalyvianaki, and T. Charalambous, “An
asynchronous approximate distributed alternating direction method of
multipliers in digraphs,” in IEEE Conference on Decision and Control,
2021, pp. 3406–3413.

[18] A. Engelmann, Y. Jiang, B. Houska, and T. Faulwasser, “Decompo-
sition of nonconvex optimization via bi-level distributed ALADIN,”
IEEE Transactions on Control of Network Systems, vol. 7, no. 4, pp.
1848–1858, 2020.

[19] X. Du, J. Wang, X. Zhou, and Y. Mao, “A bi-level globalization
strategy for non-convex consensus ADMM and ALADIN,” arXiv
preprint arXiv:2309.02660, 2023.

[20] S. Zhu, M. Hong, and B. Chen, “Quantized consensus ADMM for
multi-agent distributed optimization,” in IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, 2016, pp. 4134–
4138.

[21] A. Elgabli, J. Park, A. S. Bedi, C. B. Issaid, M. Bennis, and
V. Aggarwal, “Q-GADMM: Quantized group ADMM for communica-
tion efficient decentralized machine learning,” IEEE Transactions on
Communications, vol. 69, no. 1, pp. 164–181, 2020.

[22] A. I. Rikos, W. Jiang, T. Charalambous, and K. H. Johansson,
“Asynchronous distributed optimization via ADMM with efficient
communication,” in IEEE Conference on Decision and Control, 2023,
pp. 7002–7008.

[23] ——, “Distributed optimization with efficient communication, event-
triggered solution enhancement, and operation stopping,” arXiv
preprint arXiv:2504.16477, 2025.

[24] J. G. Proakis and M. Salehi, Communication Systems Engineering,
2nd ed. Upper Saddle River, N.J.: Prentice Hall, 2002.

[25] J. Wei, X. Yi, H. Sandberg, and K. H. Johansson, “Nonlinear con-
sensus protocols with applications to quantized communication and
actuation,” IEEE Transactions on Control of Network Systems, vol. 6,
no. 2, pp. 598–608, 2019.

[26] X. Du and J. Wang, “Consensus ALADIN: A framework for dis-
tributed optimization and its application in federated learning,” arXiv
preprint arXiv:2306.05662, 2023.

[27] G. Oliva, R. Setola, and C. N. Hadjicostis, “Distributed finite-time
calculation of node eccentricities, graph radius and graph diameter,”
Systems & Control Letters, vol. 92, pp. 20–27, 2016.

[28] D. Deplano, N. Bastianello, M. Franceschelli, and K. H. Johans-
son, “Optimization and learning in open multi-agent systems,” arXiv
preprint arXiv:2501.16847, 2025.

[29] A. Beck, First-order methods in optimization. SIAM, 2017.
[30] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model Predictive Control:

Theory, Computation, and Design, 2nd Edition. Nob Hill Publishing,
2017.

[31] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[32] A. I. Rikos, C. N. Hadjicostis, and K. H. Johansson, “Non-oscillating
quantized average consensus over dynamic directed topologies,” Au-
tomatica, vol. 146, p. 110621, 2022.

[33] A. I. Rikos, A. Grammenos, E. Kalyvianaki, C. N. Hadjicostis,
T. Charalambous, and K. H. Johansson, “Distributed optimization for
quadratic cost functions with quantized communication and finite-
time convergence,” IEEE Transactions on Control of Network Systems,
vol. 12, no. 1, pp. 930–942, 2025.

[34] A. I. Rikos, W. Jiang, T. Charalambous, and K. H. Johansson,
“Distributed optimization via gradient descent with event-triggered
zooming over quantized communication,” in IEEE Conference on
Decision and Control, 2023, pp. 6321–6327.

[35] ——, “Distributed optimization with gradient descent and quantized
communication,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 5900–5906,
2023.

[36] X. Du, K. H. Johansson, and A. I. Rikos, “Decentralized optimization
via RC-ALADIN with efficient quantized communication,” arXiv
preprint arXiv:2508.06197, 2025.

[37] A. I. Rikos, W. Jiang, T. Charalambous, and K. H. Johansson, “Dis-
tributed optimization with finite bit adaptive quantization for efficient
communication and precision enhancement,” in IEEE Conference on
Decision and Control, 2024, pp. 2531–2537.


	Introduction
	Notation and Preliminaries
	Problem Formulation
	Preliminaries of RC-ALADIN
	Decentralized RC-ALADIN with Efficient Communication
	Algorithm Development
	Convergence Analysis

	Numerical Simulation
	Conclusions and Future Directions
	References

