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Abstract— This paper proposes a structure exploiting al-
gorithm for solving non-convex power system state estima-
tion problems in distributed fashion. Because the power flow
equations in large electrical grid networks are non-convex
equality constraints, we develop a tailored state estimator
based on Augmented Lagrangian Alternating Direction In-
exact Newton (ALADIN) method, which can handle these
nonlinearities efficiently. Here, our focus is on using Gauss-
Newton Hessian approximations within ALADIN to arrive at
an efficient (computationally and communicationally) variant
of ALADIN for network maximum likelihood estimation prob-
lems. Analyzing the IEEE 30-Bus system we illustrate how the
proposed algorithm can be used to solve non-trivial network
state estimation problems. We also compare the method with
existing distributed parameter estimation codes in order to
illustrate its performance.

I. INTRODUCTION

State estimation is of increasing importance in modern
electricity transmission and distribution systems. Due to
the integration of renewable energy systems, effective grid
operation often requires detailed knowledge of the system
state. High-accuracy measurement devices are usually costly.
Hence it is relevant to consider all available information and
also cost-effective (including possibly inaccurate) measure-
ment devices for determining the power system’s state.1 A
standard method to solve the arising Power System State
Estimation (PSSE) problem is via weighted nonlinear least
squares [27], [1], [22].

Centralized formulations of AC PSSE—i.e. considering
the full AC power flow equations—have a long history
and can be traced back to [25]. AC PSSE is in general
hard to solve as it is usually formulated as nonlinear least
squares problem yielding a large-scale non-convex opti-
mization problem. Different formulations including polar
vs. rectangular coordinates and algorithms with different
Jacobian approximations, including exact Jacobian [27], p-q
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1We remark that in power systems the notion of state variables differs
slightly from control. Hence here we refer to a set of variables defined as
the solution of a stationary nonlinear system of equations.

decoupled Jacobian [13], and Gauss-Newton approximation
[22], have been considered for the AC PSSE problem.

The non-convexity of the power flow equations makes
large-scale PSSE problems difficult to solve. Hence several
authors have considered convex formulations and relaxations
of this problem. This includes DC approximations [26], [21]
and more recently SDP relaxations [32], [19]. However,
as voltage and reactive power are often needed (especially
in context of renewable) the practical usefulness of DC
approximations is in general limited.

As power systems are large scale and as limited infor-
mation exchange is desirable, distributed approaches have
also been considered for AC and DC state estimation [25],
[2], [16].2 The DC case is considered in [26], [31], [28].
In a distributed setting, AC PSSE is difficult to solve. The
reason being that so far there are only a few algorithms for
general distributed non-convex optimization [5], [14]. Classi-
cal methods for distributed AC state estimation often exploit
the sparsity pattern of the Jacobian of the measurement
equations. These works started already in the 1970s with the
seminal paper [25], continued with [2], [15]; and can also
be found today [17]. Recently [20] proposed a distributed
Gauss-Newton approach using matrix splitting techniques
with promising results.

A second and more recent line of research applies dis-
tributed optimization techniques coming from convex opti-
mization to AC PSSE. These approaches include the aux-
iliary problem principle [7] and the popular Alternating
Direction of Multipliers Method (ADMM) [16]. An algo-
rithm based on gossiping techniques can be found in [31].
These methods usually have an advantage over splitting
techniques—they are typically decentralized, i.e. they avoid
central coordination and communicate based on neighbor-
hood information only. However, despite working well for
many cases, these methods usually have limited convergence
guarantees for AC PSSE. A recent overview on distributed
AC state estimation can be found in [11].

In this paper, we follow a different route tailoring the
Augmented Lagrangian Alternating Direction Inexact New-
ton (ALADIN) method [14] to AC PSSE problems. After in-
troducing the problem at hand in Section II, we explain how
to exploit its distributed structure in Section III. Section IV
introduces the main algorithmic contribution of this paper;

2In this paper, we distinguish between distributed and decentralized
computation. Decentralized computation only allows communication with
neighbors in a network, while distributed algorithms may admit a limited
amount of central coordination. Sometimes distributed approaches are also
called hierarchical depending on the amount of central coordination [11].
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i.e. we construct a variant of ALADIN based on generalized
Gauss-Newton Hessian approximation. Such Gauss-Newton
approximation based approaches have been analyzed exten-
sively for unconstrained nonlinear least-squares problems
[23, Chapter 10.3] as well as in the context of centralized
parameter estimation of constrained problem as analyzed
in [3], [4] and [24]. However, in Section IV we analyze local
convergence properties of distributed least squares estimation
based on ALADIN and Hessian approximations. The main
contribution of this paper is presented in Section V, where
we not only illustrate the performance of the proposed
algorithm on the IEEE 30-bus system in comparison to the
widely used ADMM algorithm [5], but also elaborate on the
communication demand of the proposed scheme.

II. POWER SYSTEM STATE ESTIMATION

This paper considers a power system (N ,L, Y ) consisting
of a set of buses N = {1, . . . , N}, a set of transmission lines
L ⊆ N×N , and a sparse, complex-valued admittance matrix
Y = G + jB ∈ CN×N with j =

√
−1 . The admittance

matrix is defined by

Yk,l =

{ ∑
l 6=k

(gk,l + jbk,l) if k = l,

− (gk,l + jbk,l) if k 6= l,

where gk,l denotes the line conductance and bk,l denotes the
line susceptance for all transmission lines (k, l) ∈ L. For
(k, l) /∈ L, we have gk,l = bk,l = 0.

To each node in the grid, we assign a state as

x>k = (θk vk pk qk)> ∈ R4, (1)

where θi is the voltage angle, vi is the voltage magnitude
and pi, qi are the net active and reactive power at node
i ∈ N . The state of the grid is then defined as x> =
(x1, . . . , xN )> ∈ R4N . The grid physics are described by
the the power flow equations in polar form as

0 = pk − vk
∑
l∈N

vl(Gk,l cos(θk,l) +Bk,l sin(θk,l)), (2a)

0 = qk − vk
∑
l∈N

vl(Gk,l sin(θk,l)−Bk,l cos(θk,l)), (2b)

for all nodes k ∈ N with θk,l = θk − θl, cf. [1]. Note that
Gk,l and Bk,l refer to the real and imaginary pats of the
entries of the admittance matrix Y .

A. Measurement Functions

PSSE aims at determining the steady state, x, of the grid
using a given set of measurements. In general one considers
two types of measurements: the first type is able to directly
measure the system states xk (or parts thereof) at the nodes.
The second type of measurements measures variables which
depend on the system state, i.e. the power flows and currents
over the transmission lines. In order to arrive at a model
that allows us to use the second type of measurements,
we introduce measurement functions, which relate the nodal

states to the power flows over the transmission lines. These
functions are

fp(xk, xl) = vk[vkgk,l − vlgk,l cos(θk,l)]

− vk[vlbk,l sin(θk,l)] ,

fq(xk, xl) = − vk[vkbk,l − vlbk,l cos(θk,l)]

+ vk[vlgk,l sin(θk,l)] ,

fi(xk, xl) =

√
fpt(xk, xl)2 + fqt(xk, xl)2

vk
,

where fp, fq, fi : R4 × R4 → R denote the active power,
respectively, reactive power, and the current over the trans-
mission line (k, l) ∈ L. The complete vector-valued mea-
surement function FN ,L : R4|N | → R4|N |+3|L| is then given
by

FN ,L(x) :=

(
Σ

1
2

k (xk − x̂k)k∈N

W
1
2

k,l (f(xk, xl)− ŵk,l)(k,l)∈L

)
(3)

where f = (fp, fq, fi)
>. Moreover, we use the shorthand

ŵk,l = (p̂k,l, q̂k,l, îk,l)
> to collect the measurements of

the active power, the reactive power and the current over
transmission line (k, l) ∈ L. The matrices Σk ∈ S4 and
Wk,l ∈ S3 are positive semi-definite approximations of the
inverse covariance matrices of the associated measurement
errors [3].

B. Maximum Likelihood State Estimation

The above model is used to formulate the AC PSSE
problem of interest as the following nonlinear least-squares
optimization problem

min
x
‖FN ,L(x)‖22 s.t. (2) for all k ∈ N . (4)

Here, the underlying assumption is that the measurement er-
rors have Gaussian probability distributions. This way (4) can
be interpreted as a maximum likelihood parameter estimation
problem [4], [29].

Remark 1 Although the theoretical properties of nonlin-
ear least-squares optimization problems are rather well-
understood [18], Problem (4) is in general a large-scale non-
convex optimization problem with non-convex objective and
non-convex constraint set over the complete electrical grid.
As it turns out, AC PSSE problems are rather challenging to
solve in practice. In particular, there might be multiple local
minimizers and numerical algorithms might converge to one
or the other minimum depending on the initialization [6].

III. DISTRIBUTED LEAST SQUARES ESTIMATION

In order to solve (4) in distributed fashion, we reformulate
(4) in affinely-coupled separable from [14]. To this end,
we recall the partitioning method from [9], for alternative
partitioning schemes see [10], [11], [16]. Figure 1 depicts
the whole IEEE 30-Bus network as well as the partitioning
strategy used throughout this paper.
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Fig. 1. IEEE 30-bus system with partitioning.

We first divide the bus set N into node sets N 0
i , one

for each region R = {1, . . . R} such that ∪
i∈R
N 0

i = N
and N 0

i ∩ N 0
j = ∅ for all i, j ∈ R with i 6= j. At each

transmission line connecting two adjacent regions, i.e. all
(m,n) ∈ L with m ∈ Ni and n ∈ Nj , i 6= j, we introduce
an auxiliary bus pair (k, l) and we collect all auxiliary bus
pairs in set A. The set of auxiliary buses of region i ∈ R
are denoted as Ai. Finally, we combine all auxiliary nodes
and original nodes belonging to one region in combined
node sets Ni = N 0

i ∪ Ai. The line set connecting original
nodes with each other and all auxiliary nodes for region
i ∈ R is denoted by Li. We assume a decomposition in
the middle of each transmission line connecting two regions.
This leads to new line admittances ym,k = 2ym,n and yn,l =
2ym,n, respectively. The partitioning strategy is graphically
illustrated in Figure 2 and Figure 1.

N 0
i

l

aux. node pair (k, l) ∈ A

pk, qk
vke

jθk

N 0
jk

(. . . ) (. . . )

m n
2 ymn 2 ymn

pl, ql
vle

jθl
Ni Nj

Fig. 2. Decoupling of regions via auxiliary nodes.

In order to resemble the original physical properties of the
grid model, we introduce the consensus constraints

θk = θl, vk = vl, for all (k, l) ∈ A . (5)

A. Distributed Formulation of the AC PSSE Problem

This section reformulates (4) in an affine-coupled separa-
ble form, as required in the context of distributed optimiza-
tion [14]. To this end, we introduce state vectors zi for all re-
gions i ∈ R such that z>i = (θi vi pi qi)i∈Ni

∈ R4|Ni|.
Summarizing the measurement equations for all nodes Ni

and transmission lines (k, l) ∈ Li in each region i ∈ R, i.e.

FNi,Li
yields

min
z

∑
i∈R
‖FNi,Li

(zi)‖22 (6a)

s.t.
∑
i∈R

Aizi = 0 | λ (6b)

Hi(zi) = 0 for all i ∈ R, (6c)

with z> = (z>1 , . . . , z
>
R) ∈ R4|N | and (6b) contains equa-

tions (5) by appropriate choice of coupling matrices Ai ∈
R2|A|×4|N | and λ denotes Lagrange multipliers assigned to
(6b). Subsequently we denote FNi,Li

as Fi for simplicity.
The equality constraint Hi collects the power flow equations
(2) for all i ∈ R.

IV. DISTRIBUTED OPTIMIZATION ALGORITHM

This section introduces a Gauss-Newton Hessian approx-
imation based variant of the distributed optimization algo-
rithm ALADIN [14], which is tailored to AC PSSE problems
in nonlinear least-squares form.

A. Main Algorithmic Steps

Algorithm 1 outlines a variant of ALADIN for solving (6).
There are two main steps: a parallelizable Step 1) and a con-
sensus Step 3). In Step 1), decoupled NLPs (7a) are solved
followed by a sensitivity evaluation (7b)—both in parallel.
Note that due to the Gauss-Newton Hessian approximation,
we only need to compute first-order derivatives. This way
the computational burden and communication overhead is
reduced significantly compared with standard ALADIN.

Algorithm 1 Gauss-Newton ALADIN
Initialization: Initial guess (z, λ), choose ρ, ε > 0.
Repeat:

1) Parallelizable Step: For each i ∈ R solve

min
yi

‖Fi(yi)‖22 + λ>Aiyi +
ρ

2
‖yi − zi‖22

s.t. Hi(yi) = 0 | κdi
(7a)

and compute

bi = Fi(yi), Bi = ∇Fi(yi)
>, Ci = ∇Hi(yi)

> (7b)

in parallel.
2) Termination Criterion: Terminate if∥∥∥∥∥∑

i∈R
Aiyi

∥∥∥∥∥ ≤ ε and ‖yi − zi‖∞ ≤ ε . (7c)

3) Consensus Step: Solve the coupled QP problem

min
∆y

∑
i∈R
‖Bi∆yi‖22 + 2∆y>i Bibi

s.t.
∑
i∈R

Ai(yi + ∆yi) = 0 | λQP,

Ci∆yi = 0 | κQP
i i ∈ R.

(7d)

and update z+ ← y + ∆y, λ+ ← λQP.
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B. Local Convergence Analysis

Let (z∗, λ∗, κ∗) denote a primal-dual locally optimal so-
lution of (6), where λ? denotes the multiplier of the linear
coupling constraints and κ? the multiplier that is associated
with the power-flow equations.

Assumption 1 (Regularity of power flow ) The Jacobian
of the power flow equations (2) with respect to all states
x of the network at z? has full row-rank.

Notice that a detailed discussion of mathematical conditions
under which the linear independence constraint qualification
(LICQ) condition in Assumption 1 is satisfied for power flow
networks can be found in [12], therein, it is also discussed
why this assumption is essentially satisfied for all power-flow
networks of practical interest.

Proposition 1 If Assumption 1 holds, then the LICQ con-
dition for the decoupled NLPs (7a) as well as the coupled
QP (7d) is satisfied, that is, the matrix [A> C>]> has full
row rank.

Proof. The proof of the proposition follows from the
fact that the Jacobian of the consensus constraint has—
by definition—full rank, as this constraint enforces linear
coupling between neighboring regions. Because the power-
flow equations are local (decoupled) in the reformulated
problem (6), they satisfy the decoupled LICQ conditions
(since Assumption 1 holds), and, additionally, cannot be
redundant to the coupling constraints. �

In order to further ensure that any local solution (z∗, λ∗, κ∗)
is a regular KKT point of (6), the following proposition is
introduced.

Proposition 2 If the residuum
∑

i ‖Fi(z
?
i )‖22 in the optimal

solution is sufficiently small and if the matrices Σk are
positive definite, then the second order sufficient optimality
condition (SOSC) is satisfied for (6) at z? and the Gauss-
Newton Hessian approximation, ∇Fi(zi)∇Fi(zi)

> � 0 is
positive definite in a local neighborhood of z?.

Proof. The statement of the above proposition is well-known
in the context of Gauss-Newton SQP methods and a formal
proof can be found in [3]. We remark that the conditions
therein are indeed satisfied if the matrices Σk are positive
definite, as this condition trivially ensures identifiability of
all measured states. �

Note that the conditions of the above proposition are satisfied
in practice if the model-data mismatch is small—but it can
be violated otherwise.

Theorem 1 Let Assumption 1 be satisfied and let the
residuum

∑
i ‖Fi(z

?
i )‖22 at the local minimizer be sufficiently

small such that Propsition 2 is applicable. Then the iterates
(z, λ) locally converge to (z∗, λ∗) achieving a locally linear
convergence rate.

Proof. Propositions 1 and 2 ensure that minimizers of
the decoupled NLPs (7a) are regular KKT points in a
neighborhood of the optimal solution. Hence we can apply
Lemma 3 in [14] to show that the solution (y, κd) of the
decoupled NLP satisfies∥∥∥∥[ y − z∗

κd − κ∗
]∥∥∥∥

2

≤ α
∥∥∥∥[ z − z∗

λ− λ∗
]∥∥∥∥

2

(8)

for a constant α <∞. Furthermore, in [14] it has been shown
that the consensus step of ALADIN is locally equivalent
to one SQP iteration. Thus, as we employ a Gauss-Newton
Hessian approximation, we have∥∥∥∥[ z+ − z∗

λ+ − λ∗
]∥∥∥∥

2

≤ γ

∥∥∥∥∥∥
 y − z∗

λ− λ∗
κd − κ∗

∥∥∥∥∥∥
2

.

Next, recall that the linear convergence rate of Gauss-Newton
methods is locally proportional to the least-squares residuum
at the optimal solution. In other words, we have γ =
O(
∑

i ‖Fi(z
?
i )‖22), as proven in [3]. Thus, as long as the

least-squares residuum is sufficiently small, it holds that∥∥∥∥[ z+ − z∗
λ+ − λ∗

]∥∥∥∥
2

≤ γ(α+ 1)

∥∥∥∥[ z − z∗
λ− λ∗

]∥∥∥∥
2

with γ(α+ 1) < 1. This finishes the proof. �

Note that Theorem 1 establishes local convergence of Al-
gorithm 1 only. Thus, if one has poor initial guesses for
the state, the proposed method needs to be augmented by a
globalization routine, as discussed in [14].

C. Communication Overhead

Step 3 of Algorithm 1 communicates between different re-
gions. The forward communication collects matrices B>i Bi,
Ci and vectors Bibi, Aiyi such that there are in total∑

i∈R
6|Ni|+ 16|Ni|2 + 2|A|

floats that need to be uploaded. In the download phase,
after (7d) is solved, ALADIN sends the dual update λ+

and local direction ∆yi to each region, which requires
2|A|+ 4|Ni| floats in total for each region i ∈ R.

V. NUMERICAL EXAMPLE

In this section, we illustrate the performance of Algo-
rithm 1 drawing upon the 30-bus system shown in Figure 1.

A. Implementation and Data

The problem data is obtained from the MATPOWER
dataset [33], although in our case study shunt elements are
neglected. The system is partitioned into four regions R =
{1, 2, 3, 4} which are linked by |A| = 8 pairs of auxiliary
nodes. We use nodal measurements and line measurements
for all original nodes k ∈ N 0 and all lines connecting
original nodes (k, l) ∈ Ni \ Ai ×Ni \ Ai and all i ∈ R.

The measurements in our case study have been obtained
by running a realistic scenario simulation in MATPOWER.
During this simulation, we have introduced white Gaussian
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noise with zero mean and a relative error variance of 10−4

the states θk, pk, qk. In addition, the relative variance of the
noise added to the voltage magnitude vk has been set to
10−5. Notice that such a white noise has been added for
all k ∈ N 0. The flows over transmission lines pk,l, qk,l and
ik,l are subject to a relative variance of 10−5, which is a
standard value that is often used in the context of PSSE [30].
The considered associated weighting matrices of the least-
squares objective are

Σk = cov(x̂k)−1 = diag{104, 105, 104, 104}

for all nodes k ∈ N 0 and

Wk,l = cov(ŵk)−1 = diag{104, 104, 104}

for all (k, l) ∈ Ni \ Ai × Ni \ Ai. It can be checked nu-
merically that this choice ensures that the local convergence
conditions of Theorem 1 are indeed satisfied.

B. Numerical Comparison of ADMM and ALADIN

The implementation of Algorithm 1 relies on
Casadi-v3.4.5 with IPOPT and MATLAB 2018a.
The tuning parameters in Algorithm 1 are set to ρ = 104.
Moreever, in order to assess the numerical performance
of the proposed Gauss-Newton ALADIN algorithm, we
compare our implementation with a standard implementation
of ADMM, where the augmented Lagrangian parameter is
set to ρADM = 104, too. Note that ADMM does not provide
convergence guarantees for general non-convex problems.
Indeed counter-examples where ADMM is divergent are
given in [14]. However, it turns out that both ADMM
and Gauss-Newton ALADIN converge for this particular
PSSE case study. Figure 3 shows the convergence of
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Fig. 3. Convergence of states for the IEEE 30-bus system.

voltage angles, voltage magnitudes and active/reactive
powers over the iteration index k. One can observe that
ALADIN converges at a fast linear rate while ADMM
converges slower and to lower accuracy. Figure 4 shows
the convergence of the corresponding consensus constraint
violation ‖Axk − b‖∞, which can be interpreted as the
degree of matching of the voltage angles and magnitudes at
auxiliary nodes according to (5).

The fast linear convergence of ALADIN can also here
be witnessed; that is, for this PSSE problem, our numerical
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Fig. 4. Consensus violation.

results indicate faster convergence of ALADIN compared to
ADMM. However, as shown in [8], one should keep the
limitations of ALADIN in mind. These are, a higher per-
step communication overhead and complexity compared to
ADMM and the central coordination that is required in the
coordination step.

Remark 2 (Effects of scaling on convergence) It is well-
known that ADMM is rather scaling dependent [5]. In our
numerical implementation all variables have already been
scaled before running the ADMM routine, but, of course,
we cannot exclude that it is possible to further improve the
performance of ADMM by developing more sophisticated
scaling or pre-conditioning strategies. However, one of the
key advantages of Algorithm 1 versus ADMM is that it
works “out of the box”; that is, there is no pre-conditioning
or scaling needed, as Gauss-Newton methods are naturally
invariant with respect to scaling [3], [14].

C. A Posteriori Error Analysis

As for Bayesian inference or maximum likelihood estima-
tion problem, there arises also in PSSE the question what can
be said about the quality of the a posteriori distribution of the
parameter estimate. At this point, we rely on a mature body
of literature on nonlinear parameter estimation theory as
reviewed in [18]. Therein, it has been proven that the inverse
of the Fisher information matrix of a nonlinear least-squares
parameter estimation problem is as a lower bound of the a-
posteriori parameter estimation variance matrix. This relation
is also known as Cramér-Rao bound. We refer to [18], [29]
for an in-depth discussion and further references. Note that
the inverse Fisher information matrix of the state estimate of
the i-th subregion is in our context given byI0

0


> BRB

>
R C>R A>R

CR 0 0

AR 0 0


−1 I0

0

 ,

where BR = diag(Bi)i∈R denotes the derivative of F
while AR and CR denote the associated constraint Jacobian
matrices, all evaluated a-posteriori at the optimal solution. A
detailed derivation of this expression for the inverse Fisher
information matrix in the context of constrained Gauss-
Newton methods can be found in [4], see also [29]. Table I
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lists five selected diagonal elements of the above matrix
relative to the square of the nominal value of the associated
parameter estimate and the average over the whole network.

TABLE I
RELATIVE VARIANCE AT SELECTED NODES.

Bus# θ v p q

1 7.86 × 10−5 1.16 × 10−6 1.61 × 10−5 4.95 × 10−5

8 7.46 × 10−5 1.01 × 10−6 1.90 × 10−5 4.24 × 10−5

13 9.81 × 10−5 2.71 × 10−6 3.56 × 10−6 7.36 × 10−5

20 9.09 × 10−5 2.49 × 10−6 8.48 × 10−5 9.55 × 10−5

30 9.93 × 10−5 4.73 × 10−6 7.21 × 10−6 2.65 × 10−5

AVG 8.57 × 10−5 2.17 × 10−6 4.00 × 10−5 6.45 × 10−5

As shown in the table, in fact, most of the relative errors
are below 1%, such that it can certainly be claimed that no
over-fitting effects are visible in our PSSE case study. These
results suggest that a more detailed analysis of the parameter
estimation accuracy in PSSE, as well as the optimization
of sensor locations in power grids are an interesting future
research direction.

VI. CONCLUSION

This work has introduced a distributed state estimation
algorithm for non-convex AC PSSE problems based on
ALADIN and a Gauss-Newton Hessian approximation. A
local convergence condition for this algorithm has been given
in Theorem 1. Moreover, we have illustrated the promising
convergence behavior of Gauss-Newton compared to state-
of-the-art ADMM methods by analyzing a highly non-trivial
IEEE 30-bus power grid.
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