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Abstract— This paper is about computationally tractable
methods for power system parameter estimation and Optimal
Experiment Design (OED). The main motivation of OED is
to increase the accuracy of power system parameter estimates
for a given number of batches. One issue in OED, however,
is that solving the OED problem for larger power grids turns
out to be computationally expensive and, in many cases, com-
putationally intractable. Therefore, the present paper proposes
three numerical approximation techniques, which increase the
computational tractability of OED for power systems. These
approximation techniques are benchmarked on a 5-bus and a
14-bus case study.

Keywords: Power Systems, Parameter Estimation, Optimal
Experiment Design, Admittance Estimation

I. INTRODUCTION

The power system industry is facing a variety of challenges
such as supply diversification, reducing carbon emissions,
secure network access for renewable energy and electricity
market pricing. Techniques based on online optimization are
among the most promising approaches for addressing these
challenges. These techniques range from classical Optimal
Power Flow (OPF) problems [1], over optimal reactive power
dispatch [2], to reactive power planning [3].

In the above approaches, the admittance of the power
grid is typically treated as known. However, parameters are
often unknown in practice and may even vary over time,
e.g., due to temperature changes. Hence, online parameter
estimation is used. Approaches based on multiple measure-
ments snapshots via Recursive Least Squares (RLS) has
been considered in [4–7]. However, RLS-based estimation
is sometimes limited in accuracy.

More recently, Optimal Experimental Design (OED) was
applied as an alternative to pure RLS [8–10]. Here, the
main idea is to choose active/reactive power inputs of the
generators such that the amount of extracted information
in the estimation step is maximized. However, doing so
may lead to high costs for system operation, since OED
neglects the cost of power generation. Having this in mind
and inspired by [11], [12] proposes an adaptive method for
trading-off OED and the OPF cost. This leads to an excitation
of the system, mainly its reactive power, which reduces the
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cost of optimal estimation substantially compared with pure
OED, but still leads to an improved performance compared
with RLS. A drawback of all OED approaches outlined
before is their computational intractability for larger grids.
The objective function in OED requires inversion of the
Fisher Information Matrix (FIM), which does not scale well
with the number of buses. Moreover, the nonlinear power
flow equations lead to additional complexity.

In the present paper, we propose approximation techniques
to improve the numerical tractability of OED for power
system parameter estimation. Specifically, we develop an
approach based on a Newton-type iteration for inner OED
approximation and two outer approximation techniques for
approximating the inversion of the Fisher matrix. All ap-
proximations avoid symbolic matrix inversion in the imple-
mentation, which is potentially costly. In terms of controlled
variables, we focus on the reactive power in order to keep
the system operation cost low during the estimation.

The remaining chapters are structured as follows: Sec-
tion II reviews basics of AC power system modeling.
Section III presents the approximation techniques outlined
above. Section VI presents numerical case studies for a 5-
bus and a 14-bus power grid.

Notation: For a ∈ Rn and C ⊆ {1, ..., n}, (ai)i∈C ∈ R|C|

collects all components of a whose index i is in C. Sim-
ilarly, for A ∈ Rn×l and S ⊆ {1, . . . , n} × {1, . . . , l},
(Ai,j)(i,j)∈S ∈ R|S| denotes the concatenation of Ai,j for
all (i, j) ∈ S. i =

√
−1 denotes the imaginary unit, such

that Re(z) + i · Im(z) = z ∈ C, and â denotes the estimated
value of a.

II. AC POWER SYSTEM MODEL

Consider a power grid defined by the triple (N ,L, Y ),
where N = {1, 2, . . . N} represents the set of buses, L ⊆
N × N specifies the transmission lines and Y ∈ CN×N

denotes the complex admittance matrix

Yk,l
.
=

{ ∑
i ̸=k

(gk,i + i bk,i) if k = l,

− (gk,l + i bk,l) if k ̸= l.

Here, gk,l and bk,l are the conductances and susceptances
of the transmission line (k, l) ∈ L, which we aim to
estimate. Note that Yk,l = 0 if (k, l) /∈ L. The set G ∈ N
collects all nodes equipped with generators. Figure 1 shows
an exemplary 5-bus system with N = {1, . . . , 5}, and
G = {1, 3, 4, 5}.

Let vk denote the voltage amplitude at the k-th node
and θk the corresponding voltage angle. Throughout this
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Fig. 1. Modified 5-bus system from [13] with 4 generators and 3
consumers.

paper, we assume that the voltage magnitude and the voltage
angle at the first node (the slack node) are fixed, θ1 =
const and v1 = const. This assumption can be made
without loss of generality, since the power flow in the
network depends on the voltage angle differences θk − θl.
Since θ1 and v1 are given, we define the state of the system
as x

.
= (v2, θ2, v3, θ3, . . . , vN , θN )

⊤
. Moreover, we have

active and reactive power generation of generators pgk and
qgk for all k ∈ G. The tuple dk = (pdk, qdk)

⊤ denotes the
active and reactive power demand at demand nodes D ⊆ N .
As an input, we consider only the reactive powers at all but
the first generator u

.
= (pg1, (q

g
k)k∈G) and we assume that

the active power generation {pgk}k∈G\{1} is fixed. Moreover,
y

.
= (gk,l, bk,l)

⊤
(k,l)∈L ∈ R2|L| denotes the parameter vector.

Note that transmission lines (k, l) /∈ L are not considered
in y, i.e., they are not estimated and thus the sparsity of Y
is considered. The grid topology is assumed to be known in
advance.

The active and reactive power flow over the transmission
line (k, l) ∈ L is given by

Πk,l(x, y)
.
= v2k

(
gk,l

−bk,l

)
−vkvl

(
gk,l bk,l

−bk,l gk,l

)(
cos(θk − θl)

sin(θk − θl)

)
.

The total power outflow from node k ∈ N is given by∑
l∈Nk

Πk,l(x, y) = Pk(x, y)
.
= v2k

∑
l∈Nk

(
gk,l

−bk,l

)

− vk
∑
l∈Nk

vl

(
gk,l bk,l

−bk,l gk,l

)(
cos(θk − θl)

sin(θk − θl)

)
,

where Nk
.
= {l ∈ N | (k, l) ∈ L} denotes the set of

neighbors of node k ∈ N . Thus, the power flow equations
can be written in the form

P (x, y) = S(u) , (1)

with dim(P ) = 2|N |, where P (x, y)
.
=(

P1(x, y)
⊤, . . . , PN (x, y)⊤

)⊤
, and S(u)

.
=(

S1(u)
⊤, . . . , SN (u)⊤

)⊤
. Moreover,

Sk(u)
.
=

(
pgk

qgk

)
− dk, k ∈ D, Sk(u)

.
=

(
pgk

qgk

)
, k /∈ D.

III. OPTIMAL DESIGN OF EXPERIMENTS

In the following we assume that we can measure all
states x and the power flow over the transmission lines πk,l.
Hence, the measurement function is defined by

M(x, y)
.
=
[
x⊤, (Πk,l(x, y))

⊤
(k,l)∈L

]⊤
.

We assume additive Gaussian measurement noise with zero
mean and given variance Σ ∈ Sm++, i.e. χ ∼ N (0,Σ). Hence,
the measurements η are given by

η = M(x, y) + χ.

An associated Maximum Likelihood Estimation (MLE) prob-
lem is given by [5]

min
x,y

1

2
∥M(x, y)− η∥2Σ−1 +

1

2
∥y − ŷ∥2

Σ−1
0

s.t. P (x, y) = S(u), x ≤ x ≤ x.
(2)

Here, we assume that ŷ ∈ R2|L| is a given initial parameter
estimate with given variance Σ0 ∈ S2|L|

++ .

Remark 1 (Minimal Number of Measurements) Note
that the number of measurements we use here, (4|L|+2|N |),
is not minimal. A necessary condition to determine y
uniquely is that there are at least 2|L| measurements.
This follows from the implicit function theorem [14, Thm
9.28]. However, the rank of ∂M

∂y also depends on the
network topology (e.g. whether there exists islands) and the
distribution of measurement devices in the network [15,
Chap. 4], [16]. Approaches for reducing the number of
measurements with appropriate measurement placement can
be found in [17–19].

A. The Fisher Information Matrix and OED

Next, we derive an approximation for the FIM, which
we will use to compute inputs to maximize the information
gained in an estimation step. The FIM characterizes the
information content, which can be gained by an experiment.
It can be expressed as [11]

F(x, y, u) .
= Σ−1

0 + T (x, y, u)⊤Σ−1T (x, y, u) , (3)

where

T (x, y, u) .
=

∂

∂y
M(x, y) +

∂

∂x
M(x, y)

∂

∂y
x∗(y, u). (4)

Note that all derivatives are evaluated at the true parameter y.
As the true parameter y is a priori unknown, we replace y by
our current best guess ŷ in the following, which is common
practice in the context of OED [20].

The power flow equation (1) has in general multiple solu-
tions. For example, this equation is invariant under voltage
angle shifts. However, if the sensitivity matrix ∂

∂xP (x, y) has
full rank at an optimal solution (x, y) of (2), we can use the
implicit function theorem to show that a locally differentiable
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parametric solution x∗(y, u) of Equation (1) exists.1 Thus,
the last term in (4) reads

∂

∂y
x∗(y, u)

.
= −

[
∂

∂x
P (x, y)

]−1
∂

∂y
P (x, y). (5)

Since F is a mapping (Rnx ,R2|L|,Rnu) → R2|L|×2|L|,
we have to choose a scalar criterion for characterizing the
information content. Typical choices are the A-criterion, the
D-criterion or the E-criterion. For details on their advan-
tages/disadvantages and interpretations we refer to [20, 22].
Here, we choose the A-criterion, which minimizes the trace
of the inverse of the (approximate) FIM. Thus, the OED
problem is given by [8]

(x∗(ŷ), u∗(ŷ)) = argmin
x,u

Tr([F(x, ŷ, u)]−1)

s.t.


P (x, ŷ) = S(u)

u ≤ u ≤ u

x ≤ x ≤ x

(6)

The overall OED algorithm is shown in Figure 2.2

Initialize u and ŷ .

Solve (6) for given ŷ and Σ0.

Collect new measurements η
by applying u∗(ŷ).

Solve (2) for given
u∗(ŷ), η, ŷ, and compute Σ0.

Tr(Σ0) < ε

Terminate with y∗ and Σ0.

No

(ŷ, Σ0)

u

Yes

η

(y∗,Σ0)

Fig. 2. Optimal experiment design for AC power grid admittance
estimation.

IV. APPROXIMATION TECHNIQUES

There are two main computational difficulties, which make
solving (6) challenging: a) we have to invert ∂P/∂x in (5)

1Conditions under which the matrix ∂
∂x

P (x, y) has full-rank can be
found in [21], where linear independence constraint qualifications for AC
power flow problems are discussed in a more general setting.

2Note that in contrast to [8], we omit the regularization term to avoid
input chattering. As an alternative one can simply stop the OED algorithm
once the desired variance is reached.

and, b) we have to compute the inverse of F . In the following
we will explore approaches for reducing the computational
complexity.

A. Approximation via Inner Iterations

The inverse in (5) is difficult to compute in a symbolic or
automatic differentiation context—especially if N is large.
Therefore, we replace the decision variable x with an ap-
proximation of x̃∗(x̂, ŷ, û) that is defined by an iterative
procedure.

Observe that (1) is a set of nonlinear equations, which
can be solved locally using Newton-type method. Define
G(x, y, u) = P (x, y)− S(u). Newton-type method requires
the evaluation and inversion of ∂G

∂x (x, y, u) in each step. This
is expensive, and, hence we use a constant Jacobian ap-
proximation at the current iterate ∂G

∂x (x, y, u) ≈
∂G
∂x (x̂, ŷ, û)

instead of an exact Jacobian. Algorithm 1 summarizes the
resulting algorithm for K iterations. Note that from (4), we

Algorithm 1 Newton-type iteration for x̃∗(x̂, ŷ, u)

Input: Current iterates (x̂, ŷ, x̂), set x∗
0 = x̂.

For k = 0, . . . ,K:

x∗
k+1 = x∗

k −
[
∂G

∂x
(x̂, ŷ, û)

]−1

G(x∗
k, ŷ, u)

k ← k + 1

Output: x̃∗(x̂, ŷ, u) = x∗
K+1

obtain an approximation of T ,

T̃ (x̂, ŷ, u) .
=

∂

∂y
M(x̃∗(x̂, ŷ, u), y). (7)

Observe that T̃ is different from T since x̃∗(x̂, y, u) is
no longer an independent variable, which implicitly consid-
ers (1). Thus, we define an approximation of the FIM

F̃(x̂, ŷ, u) .
= Σ−1

0 + T̃ (x̂, ŷ, u)⊤Σ−1T̃ (x̂, ŷ, u). (8)

B. Fisher linearized Approximation

Next, we derive an approximation of Tr(F̃−1). We have

Tr(F̃(x̂, ŷ, u)−1)

=Tr(F̃(x̂, ŷ, û)−1) + Tr

[
∂F̃−1

∂u
· (u− û)

]
+O(∥u− û∥2)

=Tr(F̃(x̂, ŷ, û)−1) +O(∥u− û∥2)

− Tr

(
F̃(x̂, ŷ, û)−1

[
∂F̃
∂u
· (u− û)

]
F̃(x̂, ŷ, û)−1

)
(9)

=2Tr(F̃(x̂, ŷ, û)−1)

−Tr(F̃(x̂, ŷ, û)−1F̃(x̂, ŷ, u)F̃(x̂, ŷ, û)−1)+O(∥u− û∥2),

where we used a first-order Taylor expansion and Tr(A +
B) = Tr(A) + Tr(B) in the first row, [23, Eq. (59)] in the
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second row, and again a Taylor expansion in the third row.
Note that ∂F̃−1

∂u ∈ R2|L|×2|L|×G is a tensor with

∂F̃−1

∂u
· (u− û) = F̃−1

[∑
i

∂F̃
∂ui
· (ui − ûi)

]
F̃−1.

Remark 2 Notice that (9) can be interpreted as a weighted
T-criterion [24, Chapter 6.5].

V. OED REFORMULATIONS

In this section we use the approximations from the previ-
ous section to reformulate the OED problems. Three options
for doing so are discussed.

A. Fisher Linearized Approximation OED

Using both approximations from the previous section, we
rewrite (6) as

min
u
− Tr(F̃(x̂, ŷ, û)−1F̃(x̂, ŷ, u)F̃(x̂, ŷ, û)−1)

s.t.

{
u ≤ u ≤ u,

x ≤ x̃∗(x̂, ŷ, u) ≤ x.
(10)

Observe that we only have u as decision variables, which
reduces the problem dimension. We neglect the term
2Tr(F̃(x̂, ŷ, û)−1 in (9) since a constant offset in the objec-
tive does not change the minimizer. Note that the variables
(x̂, ŷ, û) are fixed to their current iterates in the above
problem, and x̃∗(x̂, ŷ, u) is given by Algorithm 1.

The essence of the above method is to hide the power flow
equations via Algorithm 1. As the number of iterations K
increases, the complexity of the objective function of (10)
increases, although the external form is concise. In the
next subsection, we use a different approach, which is less
accurate but also less costly.

B. Quadratic Approximation OED

Observe that the objective in (10) is nonlinear. A quadratic
approximation is given by

min
u

1

2
u⊤H(x̂, ŷ, û)u+ J(x̂, ŷ, û)u

s.t.

{
u ≤ u ≤ u,

x ≤ C(x̂, ŷ, û)u+ x̂ ≤ x
(11)

where

J(x̂, ŷ, û)
.
=
∂E

∂u
(x̂, ŷ, û), H(x̂, ŷ, û)

.
=

∂2E

∂u2
(x̂, ŷ, û)

C(x̂, ŷ, û)
.
=
∂x̃∗(x̂, ŷ, u)

∂u
(x̂, ŷ, û)

and E(·) represents the objective function from (10). Note
that the above problem is a Quadratic Program (QP), which
can be solved efficiently by standard QP solvers.

C. Inner Linearized Approximation OED

Computing x∗(x̂, ŷ, u) via Algorithm 1 can lead to large
memory requirements in the context of automatic differenti-
ation, since the expression graph grows with the number of
the Newton-type iterations K.

As an alternative, we use the nonlinear constraints from (6)
combined with the objective approximation from (9). This
leads to

min
x,u

− Tr(F(x̂, ŷ, û)−1F(x, ŷ, u)F(x̂, ŷ, û)−1)

s.t.

{
P (x, ŷ) = S(u)

u ≤ u ≤ u, x ≤ x ≤ x.
(12)

Here, we use (3) for evaluating the objective, where we
substitute ∂

∂y x̄
∗(y, u) = −

[
∂
∂xP (x̂, ŷ)

]−1 ∂
∂yP (x, y) in (4)

for a fixed Jacobian evaluated at (x̂, ŷ).

Remark 3 (Difference between F̃ and F) Notice the dif-
ference between F̃ and F: Whereas F̃ uses the approxi-
mation T̃ from (8) including the Newton-type iteration from
Algorithm 1, F in (6) and (12) uses (3), and (12) with the
approximation ∂

∂y x̄
∗(y, u) = −

[
∂
∂xP (x̂, ŷ)

]−1 ∂
∂yP (x, y)

in (4).

VI. NUMERICAL RESULTS

We illustrate the numerical performance of the approxi-
mations on a modified 5-bus power system from [13] (cf.
Figure 1) and on a 14-bus power system [25].

A. Implementation and Data

The problem data is obtained from the MATPOWER
dataset [26] ignoring shunt elements. The implementation
of OED relies on Casadi-v.3.4.5 with IPOPT [27] and
MATLAB 2020b. We use Gaussian measurement noise with
zero mean and a variance of 10−4. The initial value of Σ−1

0 is
set to 10−16I . We benchmark our method also against MLE
with a standard Gaussian random input for each generator,
scaled such that the total reactive power demand is met. For
the 14-bus system, the input variance is 0.01 (p.u.)

2.

B. Numerical Comparison

Next, we compare all OED variants numerically: a) clas-
sical OED from [8] using (6), b) Fisher Linearized Approx-
imation OED (FLA-OED) from Section V-A, c) Quadratic
Approximation OED (QA-OED) method from Section V-B,
and, d) Inner Linearized Approximation OED (ILA-OED),
from Section V-C.

TABLE I
COMPUTATION TIME FOR 200 BATCHES

OED Method OED FLA QA ILA

Time [sec] 19.7926 36.1696 3.9811 8.6328
Sum Variance [S2] 0.0582 0.0281 0.0358 0.0583

Table I shows the computation times with 200 batches for
the 5-bus system. We use K = 20 Newton-type iterations in
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Algorithm 1 for FLA-OED and QA-OED. Compared with
the classical OED, FLA-OED takes a longer computation
time for the same number of batches, but it also achieves a
higher accuracy. Table II shows the computation time for a

TABLE II
COMPUTATION TIME FOR A TARGET SUM VARIANCE OF 0.1.

Method OED FLA QA ILA

Time [sec] 11.1998 7.7718 1.7076 4.9239
Sum Variance [S2] 0.0992 0.0996 0.0983 0.0990

given target sum variance of 0.1. Here, one can observe the
trade-off between solution accuracy and computation time:
the accurate classical OED method and ILA-OED are faster
here, since they require a smaller number of batches to get to
the desired variance. QA-OED still has the shortest operation
time for the given target sum variance. QA-OED solves the
above problem via quadratic approximation, which leads to
fast computation. ILA-OED shows a similar accuracy as the
standard OED with less computation time. Figure 3 shows

0 50 100 150 200
10

-2

10
0

10
2

10
4

Fig. 3. Expected total variance comparison random Input, classical OED,
FLA-OED, QA-OED as well as ILA-OED method for the 5-bus power
system.

the expected total variance Tr(F(x̂, û, ŷ)−1), where (x̂, û, ŷ)
are fixed to the current iterates. All four methods lead to
similar levels of accuracy and they are more accurate than
the pure standard RLS with random generator input.

Figure 4 compares the mean relative error (MRE)

MREg =
1

|L|
∑

(k,l)∈L

|gk,l − ḡk,l|
|ḡk,l|

,

MREb =
1

|L|
∑

(k,l)∈L

|bk,l − b̄k,l|
|b̄k,l|

,

for RLS with random input, for classical OED and QA-OED.
The results of FLA-OED and ILA-OED are similar to the
ones shown in Figure 4 and are thus omitted. Note that the
value of F in (3) increases in each iteration because of the
second term, which leads the decrease of its inverse. We refer
to [28, Chapter 7] and [22] for further discussion.

Figure 5 shows the optimal reactive power inputs for all
methods. Here one can see that the reactive power update

0 50 100 150 200
10

-4

10
-2

10
0

10
2

10
4

Fig. 4. Mean relative errors of MREg (solid line) and MREb (dashed
line) for the 5-bus power system.

is less frequent in QA-OED compared with the other three
methods, which is benefitial in grid operation.
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Fig. 5. Optimal reactive power inputs for all generators as obtained by
proposed methods the 5-bus power system.

Table III shows the relative loss of optimality ∆(u(·)) of
the first iteration with different methods based on the optimal
objective T ⋆ of classical OED,

∆(u(·)) = Tr(F−1(x(u(·), ŷ)), ŷ, u(·))− T ⋆

T ⋆
.

Here, u(·) denotes inputs for different OED variants. The

TABLE III
RELATIVE LOSS OF OPTIMALITY FOR THE FIRST ITERATION

Method Random FLA QA ILA

∆(u(·)) 8.45 0.36 0.36 4.94

relative loss of optimality for the random input is computed
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as an average of 100 samples. One can observe the benefit
of OED against a random input especially in early iterations.

Figure 6 shows the total variance Tr(F(x̂, û, ŷ)−1) with
QA-OED applied to a modified 14-bus network. In order to
have a larger generator-to-node ratio, we add extra generators
on bus 9-13. With our best approximation method. QA-
OED requires 15.2507 seconds for computing 200 estimation
steps, while FLA-OED and ILA-OED are still not computa-
tional tractable for the 14-bus power system.

0 20 40 60 80 100
10

-2

10
0

10
2

Random Input

QA-OED

Fig. 6. Expected total variance comparison between random input and
QA-OED for the 14-bus power system.

VII. SUMMARY AND OUTLOOK

This paper has presented approximation methods for op-
timal experiment design operation of power grids in order
to accelerate computation. We have shown that different
approximations are possible, and first numerical results indi-
cate that a combination of inner Newton-type iterations with
quadratic approximation is promising. However, further im-
proving the scalability of OED seems crucial for application
in practice. Approaches based on semidefinte programming
will be considered in future work.

REFERENCES
[1] J. Zhu, Optimization of power system operation. John Wiley & Sons,

2015.
[2] S. Frank, I. Steponavice, and S. Rebennack, “Optimal power flow: A

bibliographic survey i,” Energy systems, vol. 3, no. 3, pp. 221–258,
2012.

[3] S. Frank, I. Steponavice, and S. Rebennack, “Optimal power flow: A
bibliographic survey ii,” Energy systems, vol. 3, no. 3, pp. 259–289,
2012.

[4] X. Bian, X. R. Li, H. Chen, D. Gan, and J. Qiu, “Joint estimation
of state and parameter with synchrophasors—part ii: Parameter
tracking,” IEEE Transactions on Power Systems, vol. 26, no. 3,
pp. 1209–1220, 2011.

[5] I. W. Slutsker, S. Mokhtari, and K. A. Clements, “Real time
recursive parameter estimation in energy management systems,”
IEEE Transactions on Power Systems, vol. 11, no. 3, pp. 1393–1399,
1996.

[6] O. Lateef, R. G. Harley, and T. G. Habetler, “Bus admittance
matrix estimation using phasor measurements,” in 2019 IEEE Power
& Energy Society Innovative Smart Grid Technologies Conference
(ISGT), IEEE, 2019, pp. 1–5.

[7] M. Saadeh, M. Alsarray, and R. McCann, “Estimation of the bus
admittance matrix for transmission systems from synchrophasor
data,” in 2016 IEEE/PES Transmission and Distribution Conference
and Exposition (T&D), IEEE, 2016, pp. 1–5.

[8] X. Du, A. Engelmann, Y. Jiang, T. Faulwasser, and B. Houska,
“Optimal experiment design for ac power systems admittance
estimation,” in In Proceedings of the 21st IFAC World Congress,
Berlin, Germany, 2020.

[9] E. Fabbiani, P. Nahata, G. De Nicolao, and G. Ferrari-Trecate,
“Identification of ac networks via online learning,” arXiv preprint
arXiv:2003.06210, 2020.

[10] E. Fabbiani, P. Nahata, G. De Nicolao, and G. Ferrari-Trecate,
“Identification of ac distribution networks with recursive least
squares and optimal design of experiment,” IEEE Transactions on
Control Systems Technology, 2021.

[11] B. Houska, D. Telen, F. Logist, M. Diehl, and J. F. V. Impe, “An
economic objective for the optimal experiment design of nonlinear
dynamic processes,” Automatica, vol. 51, pp. 98 –103, 2015.

[12] X. Du, A. Engelmann, T. Faulwasser, and B. Houska, “Online
power system parameter estimation and optimal operation,” in In
Proceedings of the American Control Conference, New Orleans,
USA, 2021, pp. 3126–3131.

[13] F. Li and R. Bo, “Small test systems for power system economic
studies,” in IEEE PES General Meeting, 2010, pp. 1–4.

[14] W. Rudin, Principles of Mathematical Analysis. Chennai: Example
Product Manufacturer, 2013.

[15] A. Abur and A. G. Expósito, Power System State Estimation: Theory
and Implementation (Power Engineering). CRC Press, 2004.

[16] T. Baldwin, L. Mili, M. Boisen, and R. Adapa, “Power system
observability with minimal phasor measurement placement,” IEEE
Transactions on Power Systems, vol. 8, no. 2, pp. 707–715, 1993.

[17] A. Pal, A. K. S. Vullikanti, and S. S. Ravi, “A pmu placement
scheme considering realistic costs and modern trends in relaying,”
IEEE Transactions on Power Systems, vol. 32, no. 1, pp. 552–561,
2016.

[18] N. M. Manousakis, G. N. Korres, and P. S. Georgilakis, “Taxonomy
of pmu placement methodologies,” IEEE Transactions on power
Systems, vol. 27, no. 2, pp. 1070–1077, 2012.

[19] P. L. Donti, Y. Liu, A. J. Schmitt, A. Bernstein, R. Yang, and
Y. Zhang, “Matrix completion for low-observability voltage estima-
tion,” IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2520–
2530, 2019.

[20] D. Telen, F. Logist, E. Van Derlinden, I. Tack, and J. Van Impe,
“Optimal experiment design for dynamic bioprocesses: A multi-
objective approach,” Chemical Engineering Science, vol. 78, pp. 82–
97, 2012.

[21] A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler, “Generic
existence of unique lagrange multipliers in ac optimal power flow,”
IEEE Control Systems Letters, vol. 2, no. 4, pp. 791–796, 2018.

[22] D. Telen, B. Houska, F. Logist, E. Van Derlinden, M. Diehl, and
J. Van Impe, “Optimal experiment design under process noise using
riccati differential equations,” Journal of Process Control, vol. 23,
pp. 613–629, 2013.

[23] K. B. Petersen and M. S. Pedersen, The matrix cookbook, Version
20121115, 2012.

[24] F. Pukelsheim, Optimal design of experiments. SIAM, 2006.
[25] R. Christie, “Power systems test case archive,” Electrical Engineer-

ing dept., University of Washington, vol. 108, 2000.
[26] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas,

“Matpower: Steady-state operations, planning, and analysis tools
for power systems research and education,” IEEE Transactions on
power systems, vol. 26, no. 1, pp. 12–19, 2010.

[27] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi: A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1–36, 2019.

[28] L. Ljung, System Identification - Theory for the User, 2nd ed. New
Jersey: Prentice Hall, 1999.

5697


